# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Slice(nn.Cell): def __init__(self): super(Slice, self).__init__() self.slice = P.Slice() def construct(self, x): return self.slice(x, (0, 1, 0), (2, 1, 3)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice(): x = Tensor( np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)) expect = [[[2., -2., 2.]], [[4., -4., 4.]]] context.set_context(mode=context.GRAPH_MODE, device_target="GPU") slice_op = Slice() output = slice_op(x) assert (output.asnumpy() == expect).all() class SliceNet(nn.Cell): def __init__(self): super(SliceNet, self).__init__() self.slice = P.Slice() def construct(self, x): return self.slice(x, (0, 11, 0, 0), (32, 7, 224, 224)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice_4d(): x_np = np.random.randn(32, 24, 224, 224).astype(np.float32) output_np = x_np[:, 11:18, :, :] x_ms = Tensor(x_np) net = SliceNet() output_ms = net(x_ms) assert (output_ms.asnumpy() == output_np).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice_float64(): x = Tensor( np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float64)) expect = np.array([[[2., -2., 2.]], [[4., -4., 4.]]]).astype(np.float64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") slice_op = Slice() output = slice_op(x) assert (output.asnumpy() == expect).all()