# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore import mindspore.context as context import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor context.set_context(mode=context.GRAPH_MODE, device_target='GPU') class TestTimeDistributed(nn.Cell): def __init__(self, cell, time_axis, reshape_with_axis=None): super(TestTimeDistributed, self).__init__() self.time_distributed = nn.TimeDistributed(cell, time_axis, reshape_with_axis) def construct(self, inputs): return self.time_distributed(inputs) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_conv2d(): inputs = np.random.randint(0, 10, [32, 12, 10, 10]) conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal') output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(conv2d, time_axis=1, reshape_with_axis=0) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(np.abs(output[:, i, :] - output_expect) < 1e-5) print("Conv2D layer wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_maxpool2d(): inputs = np.random.randint(0, 10, [32, 12, 10, 10]) pool = nn.MaxPool2d(kernel_size=3, stride=1) output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(pool, time_axis=1, reshape_with_axis=0) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("MaxPooling2D layer wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_dense(): inputs = np.random.randint(0, 10, [32, 10]) dense = nn.Dense(10, 6) output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(dense, time_axis=1, reshape_with_axis=0) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Dense layer wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_dense_with_reshape_axis_not_first(): inputs = np.random.randint(0, 10, [32, 10]) dense = nn.Dense(10, 6) output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([1, 32, 10]).repeat(6, axis=0) time_distributed = TestTimeDistributed(dense, time_axis=0, reshape_with_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[0]): assert np.all(output[i, :] == output_expect) print("Dense layer wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_argmax(): inputs = np.random.randint(0, 10, [3, 4]) argmax = ops.Argmax(output_type=mindspore.int32, axis=1) output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1) time_distributed = TestTimeDistributed(argmax, time_axis=1, reshape_with_axis=0) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i] == output_expect) print("Argmax op wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_flatten(): inputs = np.random.randint(0, 10, [3, 4, 5]) flatten = nn.Flatten() output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1) time_distributed = TestTimeDistributed(flatten, time_axis=1, reshape_with_axis=0) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Flatten op wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_conv2d_no_reshape_axis(): inputs = np.random.randint(0, 10, [32, 12, 10, 10]) conv2d = nn.Conv2d(12, 24, 4, has_bias=False, weight_init='normal') output_expect = conv2d(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(conv2d, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Conv2D layer with no reshape axis wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_maxpool2d_no_reshape_axis(): inputs = np.random.randint(0, 10, [32, 12, 10, 10]) pool = nn.MaxPool2d(kernel_size=3, stride=1) output_expect = pool(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 12, 10, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(pool, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("MaxPooling2D layer with no reshape axis wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_dense_no_reshape_axis(): inputs = np.random.randint(0, 10, [32, 10]) dense = nn.Dense(10, 6) output_expect = dense(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([32, 1, 10]).repeat(6, axis=1) time_distributed = TestTimeDistributed(dense, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Dense layer with no reshape axis wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_argmax_no_reshape_axis(): inputs = np.random.randint(0, 10, [3, 4]) argmax = ops.Argmax(output_type=mindspore.int32, axis=1) output_expect = argmax(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([3, 1, 4]).repeat(6, axis=1) time_distributed = TestTimeDistributed(argmax, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i] == output_expect) print("Argmax op with no reshape axis wrapped successful") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_time_distributed_flatten_no_reshape_axis(): inputs = np.random.randint(0, 10, [3, 4, 5]) flatten = nn.Flatten() output_expect = flatten(Tensor(inputs, mindspore.float32)).asnumpy() inputs = inputs.reshape([3, 1, 4, 5]).repeat(6, axis=1) time_distributed = TestTimeDistributed(flatten, time_axis=1) output = time_distributed(Tensor(inputs, mindspore.float32)).asnumpy() for i in range(output.shape[1]): assert np.all(output[:, i, :] == output_expect) print("Flatten op with no reshape axis wrapped successful")