# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations.array_ops as P from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter class UnstackNet(nn.Cell): def __init__(self, nptype): super(UnstackNet, self).__init__() self.unstack = P.Unstack(axis=3) self.data_np = np.array([[[[[0, 0], [0, 1]], [[0, 0], [2, 3]]], [[[0, 0], [4, 5]], [[0, 0], [6, 7]]]], [[[[0, 0], [8, 9]], [[0, 0], [10, 11]]], [[[0, 0], [12, 13]], [[0, 0], [14, 15]]]]]).astype(nptype) self.x1 = Parameter(initializer(Tensor(self.data_np), [2, 2, 2, 2, 2]), name='x1') @ms_function def construct(self): return self.unstack(self.x1) def unstack(nptype): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') unstack_ = UnstackNet(nptype) output = unstack_() expect = (np.reshape(np.array([0] * 16).astype(nptype), (2, 2, 2, 2)), np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(nptype)) for i, exp in enumerate(expect): assert (output[i].asnumpy() == exp).all() def unstack_pynative(nptype): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') x1 = np.array([[[[[0, 0], [0, 1]], [[0, 0], [2, 3]]], [[[0, 0], [4, 5]], [[0, 0], [6, 7]]]], [[[[0, 0], [8, 9]], [[0, 0], [10, 11]]], [[[0, 0], [12, 13]], [[0, 0], [14, 15]]]]]).astype(nptype) x1 = Tensor(x1) expect = (np.reshape(np.array([0] * 16).astype(nptype), (2, 2, 2, 2)), np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(nptype)) output = P.Unstack(axis=3)(x1) for i, exp in enumerate(expect): assert (output[i].asnumpy() == exp).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_float32(): unstack(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_float16(): unstack(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_int32(): unstack(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_int16(): unstack(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_uint8(): unstack(np.uint8) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_graph_bool(): unstack(np.bool) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_float32(): unstack_pynative(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_float16(): unstack_pynative(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_int32(): unstack_pynative(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_int16(): unstack_pynative(np.int16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_uint8(): unstack_pynative(np.uint8) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unstack_pynative_bool(): unstack_pynative(np.bool)