# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P from mindspore.ops import functional as F from mindspore.common.parameter import Parameter class TestOptAssignNet_1(Cell): def __init__(self): super(TestOptAssignNet_1, self).__init__() self.add = P.Add() self.reduce_max = P.ReduceMax() self.param = Parameter( Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param') def construct(self, x, y): add_res = self.add(x, y) F.depend(add_res, F.assign(self.param, add_res)) return self.reduce_max(add_res) class TestOptAssignNet_2(Cell): def __init__(self): super(TestOptAssignNet_2, self).__init__() self.add = P.Add() self.param = Parameter( Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param') def construct(self, x, y): add_res = self.add(x, y) F.depend(add_res, F.assign(self.param, add_res)) return add_res def test_opt_assign_output_1(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") net = TestOptAssignNet_1() result_open_gk = net(Tensor(input_x), Tensor(input_y)) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=False, device_target="GPU") net_beta = TestOptAssignNet_1() result_close_gk = net_beta(Tensor(input_x), Tensor(input_y)) res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res def test_opt_assign_output_2(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") net = TestOptAssignNet_2() result_open_gk = net(Tensor(input_x), Tensor(input_y)) context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=False, device_target="GPU") net_beta = TestOptAssignNet_2() result_close_gk = net_beta(Tensor(input_x), Tensor(input_y)) res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_opt_assign_gpu_1(): test_opt_assign_output_1() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_opt_assign_gpu_2(): test_opt_assign_output_2()