# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train dataset. """ from functools import partial import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C2 import mindspore.dataset.vision.c_transforms as C def create_dataset(dataset_path, config, repeat_num=1, batch_size=32): """ create a train dataset Args: dataset_path(string): the path of dataset. config(EasyDict):the basic config for training repeat_num(int): the repeat times of dataset. Default: 1. batch_size(int): the batch size of dataset. Default: 32. Returns: dataset """ load_func = partial(ds.Cifar10Dataset, dataset_path) data_set = load_func(num_parallel_workers=8, shuffle=False) resize_height = config.image_height resize_width = config.image_width mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] # define map operations resize_op = C.Resize((resize_height, resize_width)) normalize_op = C.Normalize(mean=mean, std=std) changeswap_op = C.HWC2CHW() c_trans = [resize_op, normalize_op, changeswap_op] type_cast_op = C2.TypeCast(mstype.int32) data_set = data_set.map(operations=c_trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) # apply dataset repeat operation data_set = data_set.repeat(repeat_num) return data_set