# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing CenterCrop op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.c_transforms as vision import mindspore.dataset.vision.py_transforms as py_vision from mindspore import log as logger from util import diff_mse, visualize_list, save_and_check_md5 GENERATE_GOLDEN = False DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_center_crop_op(height=375, width=375, plot=False): """ Test CenterCrop """ logger.info("Test CenterCrop") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) decode_op = vision.Decode() # 3 images [375, 500] [600, 500] [512, 512] center_crop_op = vision.CenterCrop([height, width]) data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=center_crop_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) data2 = data2.map(operations=decode_op, input_columns=["image"]) image_cropped = [] image = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image_cropped.append(item1["image"].copy()) image.append(item2["image"].copy()) if plot: visualize_list(image, image_cropped) def test_center_crop_md5(height=375, width=375): """ Test CenterCrop """ logger.info("Test CenterCrop") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() # 3 images [375, 500] [600, 500] [512, 512] center_crop_op = vision.CenterCrop([height, width]) data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=center_crop_op, input_columns=["image"]) # Compare with expected md5 from images filename = "center_crop_01_result.npz" save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN) def test_center_crop_comp(height=375, width=375, plot=False): """ Test CenterCrop between python and c image augmentation """ logger.info("Test CenterCrop") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() center_crop_op = vision.CenterCrop([height, width]) data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=center_crop_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ py_vision.Decode(), py_vision.CenterCrop([height, width]), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data2 = data2.map(operations=transform, input_columns=["image"]) image_c_cropped = [] image_py_cropped = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): c_image = item1["image"] py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) # Note: The images aren't exactly the same due to rounding error assert diff_mse(py_image, c_image) < 0.001 image_c_cropped.append(c_image.copy()) image_py_cropped.append(py_image.copy()) if plot: visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2) def test_crop_grayscale(height=375, width=375): """ Test that centercrop works with pad and grayscale images """ # Note: image.transpose performs channel swap to allow py transforms to # work with c transforms transforms = [ py_vision.Decode(), py_vision.Grayscale(1), py_vision.ToTensor(), (lambda image: (image.transpose(1, 2, 0) * 255).astype(np.uint8)) ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=transform, input_columns=["image"]) # If input is grayscale, the output dimensions should be single channel crop_gray = vision.CenterCrop([height, width]) data1 = data1.map(operations=crop_gray, input_columns=["image"]) for item1 in data1.create_dict_iterator(num_epochs=1, output_numpy=True): c_image = item1["image"] # Check that the image is grayscale assert (c_image.ndim == 3 and c_image.shape[2] == 1) def test_center_crop_errors(): """ Test that CenterCropOp errors with bad input """ try: test_center_crop_op(16777216, 16777216) except RuntimeError as e: assert "CenterCropOp padding size is more than 3 times the original size." in \ str(e) if __name__ == "__main__": test_center_crop_op(600, 600, plot=True) test_center_crop_op(300, 600) test_center_crop_op(600, 300) test_center_crop_md5() test_center_crop_comp(plot=True) test_crop_grayscale()