# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing from_dataset in mindspore.dataset """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.text as text def test_demo_basic_from_dataset(): """ this is a tutorial on how from_dataset should be used in a normal use case""" data = ds.TextFileDataset("../data/dataset/testVocab/words.txt", shuffle=False) vocab = text.Vocab.from_dataset(data, "text", freq_range=None, top_k=None, special_tokens=["", ""], special_first=True) data = data.map(operations=text.Lookup(vocab, ""), input_columns=["text"]) res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(d["text"].item()) assert res == [4, 5, 3, 6, 7, 2], res def test_demo_basic_from_dataset_with_tokenizer(): """ this is a tutorial on how from_dataset should be used in a normal use case with tokenizer""" data = ds.TextFileDataset("../data/dataset/testTokenizerData/1.txt", shuffle=False) data = data.map(operations=text.UnicodeCharTokenizer(), input_columns=["text"]) vocab = text.Vocab.from_dataset(data, None, freq_range=None, top_k=None, special_tokens=["", ""], special_first=True) data = data.map(operations=text.Lookup(vocab, ""), input_columns=["text"]) res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(list(d["text"])) assert res == [[13, 3, 7, 14, 9, 17, 3, 2, 19, 9, 2, 11, 3, 4, 16, 4, 8, 6, 5], [21, 20, 10, 25, 23, 26], [24, 22, 10, 12, 8, 6, 7, 4, 18, 15, 5], [2, 2]] def test_from_dataset(): """ test build vocab with generator dataset """ def gen_corpus(): # key: word, value: number of occurrences, reason for using letters is so their order is apparent corpus = {"Z": 4, "Y": 4, "X": 4, "W": 3, "U": 3, "V": 2, "T": 1} for k, v in corpus.items(): yield (np.array([k] * v, dtype='S'),) def test_config(freq_range, top_k): corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) vocab = text.Vocab.from_dataset(corpus_dataset, None, freq_range, top_k, special_tokens=["", ""], special_first=True) corpus_dataset = corpus_dataset.map(operations=text.Lookup(vocab, ""), input_columns="text") res = [] for d in corpus_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(list(d["text"])) return res # take words whose frequency is with in [3,4] order them alphabetically for words with the same frequency test1_res = test_config(freq_range=(3, 4), top_k=4) assert test1_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [5, 5, 5], [1, 1], [1]], str(test1_res) # test words with frequency range [2,inf], only the last word will be filtered out test2_res = test_config((2, None), None) assert test2_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [6, 6, 6], [5, 5, 5], [7, 7], [1]], str(test2_res) # test filter only by top_k test3_res = test_config(None, 4) assert test3_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [5, 5, 5], [1, 1], [1]], str(test3_res) # test filtering out the most frequent test4_res = test_config((None, 3), 100) assert test4_res == [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [3, 3, 3], [2, 2, 2], [4, 4], [5]], str(test4_res) # test top_k == 1 test5_res = test_config(None, 1) assert test5_res == [[1, 1, 1, 1], [1, 1, 1, 1], [2, 2, 2, 2], [1, 1, 1], [1, 1, 1], [1, 1], [1]], str(test5_res) # test min_frequency == max_frequency test6_res = test_config((4, 4), None) assert test6_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [1, 1, 1], [1, 1], [1]], str(test6_res) def test_from_dataset_special_token(): """ test build vocab with generator dataset """ def gen_corpus(): # key: word, value: number of occurrences, reason for using letters is so their order is apparent corpus = {"D": 1, "C": 1, "B": 1, "A": 1} for k, v in corpus.items(): yield (np.array([k] * v, dtype='S'),) def gen_input(texts): for word in texts.split(" "): yield (np.array(word, dtype='S'),) def test_config(texts, top_k, special_tokens, special_first): corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) vocab = text.Vocab.from_dataset(corpus_dataset, None, None, top_k, special_tokens, special_first) data = ds.GeneratorDataset(gen_input(texts), column_names=["text"]) data = data.map(operations=text.Lookup(vocab, ""), input_columns="text") res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(d["text"].item()) return res # test special tokens are inserted before assert test_config("A B C D ", 4, ["", ""], True) == [2, 3, 4, 5, 0, 1] # test special tokens are inserted after assert test_config("A B C D ", 4, ["", ""], False) == [0, 1, 2, 3, 4, 5] def test_from_dataset_exceptions(): """ test various exceptions during that are checked in validator """ def test_config(columns, freq_range, top_k, s): try: data = ds.TextFileDataset("../data/dataset/testVocab/words.txt", shuffle=False) vocab = text.Vocab.from_dataset(data, columns, freq_range, top_k) assert isinstance(vocab.text.Vocab) except (TypeError, ValueError) as e: assert s in str(e), str(e) test_config("text", (), 1, "freq_range needs to be a tuple of 2 integers or an int and a None.") test_config("text", (2, 3), 1.2345, "Argument top_k with value 1.2345 is not of type [, ]") test_config(23, (2, 3), 1.2345, "Argument col[0] with value 23 is not of type []") test_config("text", (100, 1), 12, "frequency range [a,b] should be 0 <= a <= b (a,b are inclusive)") test_config("text", (2, 3), 0, "top_k must be greater than 0") test_config([123], (2, 3), -1, "top_k must be greater than 0") if __name__ == '__main__': test_demo_basic_from_dataset() test_from_dataset() test_from_dataset_exceptions() test_demo_basic_from_dataset_with_tokenizer() test_from_dataset_special_token()