# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomChoice op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms as py_transforms import mindspore.dataset.vision.py_transforms as py_vision from mindspore import log as logger from util import visualize_list, diff_mse DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_random_choice_op(plot=False): """ Test RandomChoice in python transformations """ logger.info("test_random_choice_op") # define map operations transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)] transforms1 = [ py_vision.Decode(), py_transforms.RandomChoice(transforms_list), py_vision.ToTensor() ] transform1 = py_transforms.Compose(transforms1) transforms2 = [ py_vision.Decode(), py_vision.ToTensor() ] transform2 = py_transforms.Compose(transforms2) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=transform1, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=transform2, input_columns=["image"]) image_choice = [] image_original = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_choice.append(image1) image_original.append(image2) if plot: visualize_list(image_original, image_choice) def test_random_choice_comp(plot=False): """ Test RandomChoice and compare with single CenterCrop results """ logger.info("test_random_choice_comp") # define map operations transforms_list = [py_vision.CenterCrop(64)] transforms1 = [ py_vision.Decode(), py_transforms.RandomChoice(transforms_list), py_vision.ToTensor() ] transform1 = py_transforms.Compose(transforms1) transforms2 = [ py_vision.Decode(), py_vision.CenterCrop(64), py_vision.ToTensor() ] transform2 = py_transforms.Compose(transforms2) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(operations=transform1, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=transform2, input_columns=["image"]) image_choice = [] image_original = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_choice.append(image1) image_original.append(image2) mse = diff_mse(image1, image2) assert mse == 0 if plot: visualize_list(image_original, image_choice) def test_random_choice_exception_random_crop_badinput(): """ Test RandomChoice: hit error in RandomCrop with greater crop size, expected to raise error """ logger.info("test_random_choice_exception_random_crop_badinput") # define map operations # note: crop size[5000, 5000] > image size[4032, 2268] transforms_list = [py_vision.RandomCrop(5000)] transforms = [ py_vision.Decode(), py_transforms.RandomChoice(transforms_list), py_vision.ToTensor() ] transform = py_transforms.Compose(transforms) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data = data.map(operations=transform, input_columns=["image"]) try: _ = data.create_dict_iterator(num_epochs=1).__next__() except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Crop size" in str(e) if __name__ == '__main__': test_random_choice_op(plot=True) test_random_choice_comp(plot=True) test_random_choice_exception_random_crop_badinput()