# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_confusion_matrix""" import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import ConfusionMatrix def test_confusion_matrix(): """test_confusion_matrix""" x = Tensor(np.array([1, 0, 1, 0])) y = Tensor(np.array([1, 0, 0, 1])) metric = ConfusionMatrix(num_classes=2) metric.clear() metric.update(x, y) output = metric.eval() assert np.allclose(output, np.array([[1, 1], [1, 1]])) def test_confusion_matrix_update_len(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) metric = ConfusionMatrix(num_classes=2) metric.clear() with pytest.raises(ValueError): metric.update(x) def test_confusion_matrix_update_dim(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y = Tensor(np.array([1, 0])) metric = ConfusionMatrix(num_classes=2) metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_confusion_matrix_init_num_classes(): with pytest.raises(TypeError): ConfusionMatrix(num_classes='1') def test_confusion_matrix_init_normalize_value(): with pytest.raises(ValueError): ConfusionMatrix(num_classes=2, normalize="wwe") def test_confusion_matrix_init_threshold(): with pytest.raises(TypeError): ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=1) def test_confusion_matrix_runtime(): metric = ConfusionMatrix(num_classes=2) metric.clear() with pytest.raises(RuntimeError): metric.eval()