# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.common import dtype as mstype from mindspore.common.api import _executor from mindspore.nn import TrainOneStepCell, WithLossCell, ParameterUpdate from mindspore.nn.optim import Momentum from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias") self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x def test_parameter_update_int32_and_tensor(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # test tensor param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32) _executor.compile(update_network, input_lr) # test int32 param_step = train_network.parameters_dict()['global_step'] update_global_step = ParameterUpdate(param_step) input_step = Tensor(np.array([1000]), mstype.int32) _executor.compile(update_global_step, input_step) def test_parameter_update_float32(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), 0.01, 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # construct and compile update graph param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(0.0001, mstype.float32) _executor.compile(update_network, input_lr) def test_parameter_update_error(): """ test_parameter_update """ input_np = np.array([1]) with pytest.raises(TypeError): ParameterUpdate(input_np)