# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_bprop """ import numpy as np import mindspore.nn as nn from mindspore import context from mindspore.common import Tensor from mindspore.common.api import ms_function from mindspore.common.parameter import Parameter from mindspore.ops import operations as P from ....mindspore_test_framework.utils.bprop_util import bprop def setup_module(): context.set_context(mode=context.PYNATIVE_MODE) class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.matmul = P.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') @ms_function def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return x, out def test_bprop_no_sens(): grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['inputs']) print(grads) def test_bprop_sens(): grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs']) print(grads) def test_bprop_first_only(): grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 2]).astype(np.float32)))) print(grads) def test_bprop_wrt_params(): net = Net() grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['params'], params=net.trainable_params()) print(grads) def test_bprop_wrt_params_no_sens(): net = Net() grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['params'], params=net.trainable_params()) print(grads) def test_bprop_wrt_inputs_and_params(): net = Net() grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs', 'params'], params=net.trainable_params()) print(grads)