# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import re import argparse import numpy as np from mindspore import Tensor, context from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.td_config import td_student_net_cfg from src.tinybert_model import BertModelCLS parser = argparse.ArgumentParser(description='tinybert task distill') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="tinybert ckpt file.") parser.add_argument("--file_name", type=str, default="tinybert", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) DEFAULT_NUM_LABELS = 2 DEFAULT_SEQ_LENGTH = 128 DEFAULT_BS = 32 task_params = {"SST-2": {"num_labels": 2, "seq_length": 64}, "QNLI": {"num_labels": 2, "seq_length": 128}, "MNLI": {"num_labels": 3, "seq_length": 128}} class Task: """ Encapsulation class of get the task parameter. """ def __init__(self, task_name): self.task_name = task_name @property def num_labels(self): if self.task_name in task_params and "num_labels" in task_params[self.task_name]: return task_params[self.task_name]["num_labels"] return DEFAULT_NUM_LABELS @property def seq_length(self): if self.task_name in task_params and "seq_length" in task_params[self.task_name]: return task_params[self.task_name]["seq_length"] return DEFAULT_SEQ_LENGTH if __name__ == '__main__': task = Task(args.task_name) td_student_net_cfg.seq_length = task.seq_length td_student_net_cfg.batch_size = DEFAULT_BS eval_model = BertModelCLS(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student") param_dict = load_checkpoint(args.ckpt_file) new_param_dict = {} for key, value in param_dict.items(): new_key = re.sub('tinybert_', 'bert_', key) new_key = re.sub('^bert.', '', new_key) new_param_dict[new_key] = value load_param_into_net(eval_model, new_param_dict) eval_model.set_train(False) input_ids = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) input_data = [input_ids, token_type_id, input_mask] export(eval_model, *input_data, file_name=args.file_name, file_format=args.file_format)