# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ test_training """ import os from mindspore import Model, context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack, EvalCallBack from src.datasets import create_dataset from src.metrics import AUCMetric from src.config import WideDeepConfig context.set_context(mode=context.GRAPH_MODE, device_target="Davinci") def get_WideDeep_net(config): WideDeep_net = WideDeepModel(config) loss_net = NetWithLossClass(WideDeep_net, config) train_net = TrainStepWrap(loss_net) eval_net = PredictWithSigmoid(WideDeep_net) return train_net, eval_net class ModelBuilder(): """ ModelBuilder """ def __init__(self): pass def get_hook(self): pass def get_train_hook(self): hooks = [] callback = LossCallBack() hooks.append(callback) if int(os.getenv('DEVICE_ID')) == 0: pass return hooks def get_net(self, config): return get_WideDeep_net(config) def test_train_eval(config): """ test_train_eval """ data_path = config.data_path batch_size = config.batch_size epochs = config.epochs ds_train = create_dataset(data_path, train_mode=True, epochs=epochs, batch_size=batch_size) ds_eval = create_dataset(data_path, train_mode=False, epochs=epochs + 1, batch_size=batch_size) print("ds_train.size: {}".format(ds_train.get_dataset_size())) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) net_builder = ModelBuilder() train_net, eval_net = net_builder.get_net(config) train_net.set_train() auc_metric = AUCMetric() model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) eval_callback = EvalCallBack(model, ds_eval, auc_metric, config) callback = LossCallBack(config=config) ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5) ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=config.ckpt_path, config=ckptconfig) out = model.eval(ds_eval) print("=====" * 5 + "model.eval() initialized: {}".format(out)) model.train(epochs, ds_train, callbacks=[eval_callback, callback, ckpoint_cb]) if __name__ == "__main__": wide_deep_config = WideDeepConfig() wide_deep_config.argparse_init() test_train_eval(wide_deep_config)