# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ resnext export mindir. """ import argparse import numpy as np from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export from src.config import config from src.image_classification import get_network parser = argparse.ArgumentParser(description='checkpoint export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument('--width', type=int, default=224, help='input width') parser.add_argument('--height', type=int, default=224, help='input height') parser.add_argument("--file_name", type=str, default="resnext50", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': net = get_network(num_classes=config.num_classes, platform=args.device_target) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) input_shp = [args.batch_size, 3, args.height, args.width] input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) export(net, input_array, file_name=args.file_name, file_format=args.file_format)