# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetUnique(nn.Cell): def __init__(self): super(NetUnique, self).__init__() self.unique = P.Unique() def construct(self, x): x_unique, x_idx = self.unique(x) return x_unique, x_idx class NetUniqueDynamic(nn.Cell): def __init__(self): super(NetUniqueDynamic, self).__init__() self.convert = inner.GpuConvertToDynamicShape() self.unique = P.Unique() self.split = P.Split(0, 2) def construct(self, x): x_convert = self.convert(x) x_unique, x_idx = self.unique(x_convert) x_split = self.split(x_unique) return x_unique, x_idx, x_split @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d(): x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5]).astype(np.float32)) exp_output = np.array([1, 2, 3, 4, 5]).astype(np.float32) exp_idx = np.array([3, 4, 0, 1, 2, 2, 3, 4]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_float(): x = Tensor(np.array([0.4, 0.5, 1.23, 2.2, 12.43, 12.43, 0.4, 0.5]).astype(np.float32)) exp_output = np.array([0.4, 0.5, 1.23, 2.2, 12.43]).astype(np.float32) exp_idx = np.array([0, 1, 2, 3, 4, 4, 0, 1]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_sorted(): x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.float32)) exp_output = np.array([1, 2, 4, 7, 8]).astype(np.float32) exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_zeros(): x = Tensor(np.zeros(1000).astype(np.float32)) exp_output = np.zeros(1).astype(np.float32) exp_idx = np.zeros(1000).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_large(): x_np1 = np.arange(100) x_np2 = np.arange(100, 200) x_np3 = np.arange(200, 300) x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)) x = Tensor(x_np.astype(np.float32)) exp_output = np.arange(300).astype(np.float32) exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_half(): x = Tensor(np.array([0.4, 0.5, 1.23, 2.2, 12.43, 12.43, 0.4, 0.5]).astype(np.float16)) exp_output = np.array([0.4, 0.5, 1.23, 2.2, 12.43]).astype(np.float16) exp_idx = np.array([0, 1, 2, 3, 4, 4, 0, 1]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_sorted_half(): x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.float16)) exp_output = np.array([1, 2, 4, 7, 8]).astype(np.float16) exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_zeros_half(): x = Tensor(np.zeros(1000).astype(np.float16)) exp_output = np.zeros(1).astype(np.float16) exp_idx = np.zeros(1000).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_large_half(): x_np1 = np.arange(100) x_np2 = np.arange(100, 200) x_np3 = np.arange(200, 300) x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)) x = Tensor(x_np.astype(np.float16)) exp_output = np.arange(300).astype(np.float16) exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_int32(): x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5]).astype(np.int32)) exp_output = np.array([1, 2, 3, 4, 5]).astype(np.int32) exp_idx = np.array([3, 4, 0, 1, 2, 2, 3, 4]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_sorted_int32(): x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.int32)) exp_output = np.array([1, 2, 4, 7, 8]).astype(np.int32) exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_zeros_int32(): x = Tensor(np.zeros(1000).astype(np.int32)) exp_output = np.zeros(1).astype(np.int32) exp_idx = np.zeros(1000).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_large_int32(): x_np1 = np.arange(100) x_np2 = np.arange(100, 200) x_np3 = np.arange(200, 300) x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)) x = Tensor(x_np.astype(np.int32)) exp_output = np.arange(300).astype(np.int32) exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_dynamic(): x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5, 6]).astype(np.float32)) expt_unique = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) expt_index = np.array([3, 4, 0, 1, 2, 2, 3, 4, 5]).astype(np.int32) expt_split = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) x2 = Tensor(np.array([1, 1, 4, 4, 7, 8, 8]).astype(np.float32)) expt_unique2 = np.array([1, 4, 7, 8]).astype(np.float32) expt_index2 = np.array([0, 0, 1, 1, 2, 3, 3]).astype(np.int32) expt_split2 = np.array([[1, 4], [7, 8]]).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUniqueDynamic() x_unique, x_idx, x_split = net(x) assert (x_unique.asnumpy() == expt_unique).all() assert (x_idx.asnumpy() == expt_index).all() for i, out in enumerate(x_split): assert (out.asnumpy() == expt_split[i]).all() x_unique2, x_idx2, x_split2 = net(x2) assert (x_unique2.asnumpy() == expt_unique2).all() assert (x_idx2.asnumpy() == expt_index2).all() for i, out in enumerate(x_split2): assert (out.asnumpy() == expt_split2[i]).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_int64(): x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5]).astype(np.int64)) exp_output = np.array([1, 2, 3, 4, 5]).astype(np.int64) exp_idx = np.array([3, 4, 0, 1, 2, 2, 3, 4]).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) print(x_unique) print(x_idx) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_1d_sorted_int64(): x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.int64)) exp_output = np.array([1, 2, 4, 7, 8]).astype(np.int64) exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_zeros_int64(): x = Tensor(np.zeros(1000).astype(np.int64)) exp_output = np.zeros(1).astype(np.int64) exp_idx = np.zeros(1000).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_unique_large_int64(): x_np1 = np.arange(100) x_np2 = np.arange(100, 200) x_np3 = np.arange(200, 300) x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)) x = Tensor(x_np.astype(np.int64)) exp_output = np.arange(300).astype(np.int64) exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetUnique() x_unique, x_idx = net(x) assert (x_unique.asnumpy() == exp_output).all() assert (x_idx.asnumpy() == exp_idx).all()