# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """evaluate_imagenet""" import argparse import os import mindspore.nn as nn from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from src.dataset import create_dataset from src.inceptionv4 import Inceptionv4 from src.config import config def parse_args(): '''parse_args''' parser = argparse.ArgumentParser(description='image classification evaluation') parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform') parser.add_argument('--dataset_path', type=str, default='', help='Dataset path') parser.add_argument('--checkpoint_path', type=str, default='', help='checkpoint of inceptionV4') args_opt = parser.parse_args() return args_opt if __name__ == '__main__': args = parse_args() if args.platform == 'Ascend': device_id = int(os.getenv('DEVICE_ID', '0')) context.set_context(device_id=device_id) context.set_context(mode=context.GRAPH_MODE, device_target=args.platform) net = Inceptionv4(classes=config.num_classes) ckpt = load_checkpoint(args.checkpoint_path) load_param_into_net(net, ckpt) net.set_train(False) dataset = create_dataset(dataset_path=args.dataset_path, do_train=False, repeat_num=1, batch_size=config.batch_size) loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") eval_metrics = {'Loss': nn.Loss(), 'Top1-Acc': nn.Top1CategoricalAccuracy(), 'Top5-Acc': nn.Top5CategoricalAccuracy()} model = Model(net, loss, optimizer=None, metrics=eval_metrics) print('='*20, 'Evalute start', '='*20) metrics = model.eval(dataset) print("metric: ", metrics)