# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############test vgg16 example on cifar10################# python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID """ import argparse import mindspore.nn as nn from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import cifar_cfg as cfg from src.dataset import vgg_create_dataset from src.vgg import vgg16 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Cifar10 classification') parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='device where the code will be implemented. (Default: Ascend)') parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved') parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.') parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(device_id=args_opt.device_id) net = vgg16(num_classes=cfg.num_classes) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum, weight_decay=cfg.weight_decay) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) dataset = vgg_create_dataset(args_opt.data_path, 1, False) res = model.eval(dataset) print("result: ", res)