# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test assign sub """ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations as P from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter import mindspore as ms class AssignW(nn.Cell): def __init__(self): super(AssignW, self).__init__() self.assign = P.Assign() def construct(self, x, w): self.assign(x, w) return x class AssignOp(nn.Cell): def __init__(self): super(AssignOp, self).__init__() self.b = Parameter(initializer('ones', [5]), name='b') def construct(self, w): self.b = w return w def test_assign_by_operator(): context.set_context(mode=context.GRAPH_MODE) net = AssignOp() net.to_float(ms.float16) input_data = Tensor(np.ones([5]).astype(np.float32)) net(input_data) class NetScatterNdUpdate(nn.Cell): def __init__(self): super(NetScatterNdUpdate, self).__init__() self.b = Parameter(initializer('ones', [5, 5]), name='b') self.scatter = P.ScatterNdUpdate() def construct(self, idx, x): return self.scatter(self.b, idx, x) def test_scatter_nd_update(): context.set_context(mode=context.GRAPH_MODE) net = NetScatterNdUpdate() x = Tensor(np.ones([5]).astype(np.float16)) idx = Tensor(np.ones([1]).astype(np.int32)) net(idx, x)