# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.nn import Cell, Momentum from mindspore.ops import operations as P from mindspore.train import Model from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class Net(Cell): def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True): super().__init__() self.concat = P.Concat(axis=0).shard(strategy1) if is_parameter: self.weight = Parameter(weight, "w1") else: self.weight = weight self.mul = P.Mul().shard(strategy2) self.weight2 = Parameter(weight2, "w2") def construct(self, x, b): out = self.concat((self.weight, self.weight2)) out = self.mul(x, out) return out class Net2(Cell): def __init__(self, weight, strategy1=None, strategy2=None, axis=0): super().__init__() self.mul = P.Mul().shard(strategy1) self.concat = P.Concat(axis=axis).shard(strategy2) self.weight = Parameter(weight, "w") def construct(self, x, b): out = self.mul(x, x) out = self.concat((out, self.weight)) return out class Net3(Cell): def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True): super().__init__() self.concat = P.Concat(axis=0).shard(strategy1) if is_parameter: self.weight = Parameter(weight, "w1") else: self.weight = weight self.mul = P.Mul().shard(strategy2) self.weight2 = Parameter(weight2, "w2") self.weight3 = Parameter(weight3, "w3") def construct(self, x, b): out = self.concat((self.weight, self.weight2, self.weight3)) out = self.mul(x, out) return out _x = Tensor(np.ones([16, 64, 32]), dtype=ms.float32) _b = Tensor(np.ones([16, 64, 32, 32]), dtype=ms.int32) _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32) _w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32) _w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32) w1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) w2 = Tensor(np.ones([16, 64, 32]), dtype=ms.float32) w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) def compile_net(net): context.set_context(save_graphs=True) learning_rate = 0.1 momentum = 0.9 epoch_size = 2 dataset = Dataset(_x, _b) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, optimizer=opt, amp_level="O2") model.train(epoch_size, dataset, dataset_sink_mode=False) context.reset_auto_parallel_context() def test_concat_parameter(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 2), (1, 4, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) compile_net(net) def test_concat_parameter_no_full_split(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 2, 2), (1, 2, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) compile_net(net) def test_concat_tensor_and_parameter(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 2, 2), (1, 2, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False) compile_net(net) def test_concat_output(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net2(_w1, strategy1, strategy2) compile_net(net) def test_concat_output_no_full_split(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((1, 2, 2), (1, 2, 2)) net = Net2(_w1, strategy1, strategy2) compile_net(net) def test_concat_no_strategy(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = None net = Net2(_w3, strategy1, strategy2, axis=1) compile_net(net) def test_concat_auto_parallel(): context.set_auto_parallel_context( parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w2) compile_net(net) def test_concat_auto_parallel2(): context.set_auto_parallel_context( parallel_mode="auto_parallel", device_num=8, global_rank=0) strategy1 = None strategy2 = None net = Net2(_w3, strategy1, strategy2, axis=1) compile_net(net) def test_concat_auto_parallel_3_tensor(): context.set_auto_parallel_context( parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net3(w1, w2, w3) compile_net(net)