# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.nn import Cell, Momentum from mindspore.ops import operations as P from mindspore.train import Model from mindspore.train.callback import CheckpointConfig, ModelCheckpoint from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class Net(Cell): def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, mask=0): super().__init__() self.mul = P.Mul().shard(strategy1) self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2) self.weight = Parameter(weight, "w1") self.mul2 = P.Mul() self.weight2 = Parameter(w2, "w2") self.begin = begin self.end = end self.strides = strides def construct(self, x, b): out = self.strided_slice( self.weight, self.begin, self.end, self.strides) out = self.mul(x, out) out = self.mul2(out, self.weight2) return out _x = Tensor(np.ones([16, 64, 1]), dtype=ms.float32) _b = Tensor(np.ones([16, 64, 32]), dtype=ms.float32) _w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32) _w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32) def clean_all_ckpt_files(folder_path): if os.path.exists(folder_path): for file_name in os.listdir(folder_path): if file_name.endswith('.ckpt') or file_name.endswith('.meta'): os.remove(os.path.join(folder_path, file_name)) def compile_net(net): context.set_context(save_graphs=True) learning_rate = 0.1 momentum = 0.9 epoch_size = 2 dataset = Dataset(_x, _b) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, optimizer=opt) ckpt_config = CheckpointConfig(keep_checkpoint_max=1) ckpt_path = "./parallel_ckpt" ckpt_cb = ModelCheckpoint(prefix="parallel", directory=ckpt_path, config=ckpt_config) model.train(epoch_size, dataset, dataset_sink_mode=False, callbacks=[ckpt_cb]) assert len(model._train_network.parallel_parameter_merge_net_dict) == 4 clean_all_ckpt_files(ckpt_path) context.reset_auto_parallel_context() def test_stridedslice_parameter(): context.set_auto_parallel_context( parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 1), (1, 4, 2)) strategy2 = ((1, 4, 2),) net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2) compile_net(net)