/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/common.h" #include "minddata/dataset/kernels/data/pad_end_op.h" #include "utils/log_adapter.h" using namespace mindspore::dataset; using mindspore::LogStream; using mindspore::ExceptionType::NoExceptionType; using mindspore::MsLogLevel::INFO; class MindDataTestPadEndOp : public UT::Common { protected: MindDataTestPadEndOp() {} }; TEST_F(MindDataTestPadEndOp, TestOp) { MS_LOG(INFO) << "Doing MindDataTestPadEndOp."; // first set of testunits for numeric values TensorShape pad_data_shape({1}); // prepare input tensor std::vector orig1 = {1, 1, 1, 1}; TensorShape input_shape1({2, 2}); std::vector input_shape1_vector = {input_shape1}; std::shared_ptr input1; Tensor::CreateFromVector(orig1, input_shape1, &input1); // pad_shape TensorShape pad_shape1[3] = {TensorShape({3, 3}), TensorShape({2, 4}), TensorShape({4, 2})}; // value to pad std::vector> pad_data1 = {{0}, {3.5}, {3.5}}; std::shared_ptr expected1[3]; // expected tensor output for testunit 1 std::vector out1 = {1, 1, 0, 1, 1, 0, 0, 0, 0}; Tensor::CreateFromVector(out1, pad_shape1[0], &(expected1[0])); // expected tensor output for testunit 2 std::vector out2 = {1, 1, 3.5, 3.5, 1, 1, 3.5, 3.5}; Tensor::CreateFromVector(out2, pad_shape1[1], &(expected1[1])); // expected tensor output for testunit 3 std::vector out3 = {1, 1, 1, 1, 3.5, 3.5, 3.5, 3.5}; Tensor::CreateFromVector(out3, pad_shape1[2], &(expected1[2])); // run the PadEndOp for (auto i = 0; i < 3; i++) { std::shared_ptr output; std::vector output_shape = {TensorShape({})}; std::shared_ptr pad_value1; Tensor::CreateFromVector(pad_data1[i], pad_data_shape, &pad_value1); std::unique_ptr op(new PadEndOp(pad_shape1[i], pad_value1)); Status s = op->Compute(input1, &output); EXPECT_TRUE(s.IsOk()); ASSERT_TRUE(output->shape() == expected1[i]->shape()); ASSERT_TRUE(output->type() == expected1[i]->type()); MS_LOG(DEBUG) << *output << std::endl; MS_LOG(DEBUG) << *expected1[i] << std::endl; ASSERT_TRUE(*output == *expected1[i]); s = op->OutputShape(input_shape1_vector, output_shape); EXPECT_TRUE(s.IsOk()); ASSERT_TRUE(output_shape.size() == 1); ASSERT_TRUE(output->shape() == output_shape[0]); } // second set of testunits for string // input tensor std::vector orig2 = {"this", "is"}; TensorShape input_shape2({2}); std::vector input_shape2_vector = {input_shape2}; std::shared_ptr input2; Tensor::CreateFromVector(orig2, input_shape2, &input2); // pad_shape TensorShape pad_shape2[3] = {TensorShape({5}), TensorShape({2}), TensorShape({10})}; // pad value std::vector pad_data2[3] = {{""}, {"P"}, {" "}}; std::shared_ptr pad_value2[3]; // expected output for 3 testunits std::shared_ptr expected2[3]; std::vector outstring[3] = { {"this", "is", "", "", ""}, {"this", "is"}, {"this", "is", " ", " ", " ", " ", " ", " ", " ", " "}}; for (auto i = 0; i < 3; i++) { // pad value Tensor::CreateFromVector(pad_data2[i], pad_data_shape, &pad_value2[i]); std::shared_ptr output; std::vector output_shape = {TensorShape({})}; std::unique_ptr op(new PadEndOp(pad_shape2[i], pad_value2[i])); Status s = op->Compute(input2, &output); Tensor::CreateFromVector(outstring[i], pad_shape2[i], &expected2[i]); EXPECT_TRUE(s.IsOk()); ASSERT_TRUE(output->shape() == expected2[i]->shape()); ASSERT_TRUE(output->type() == expected2[i]->type()); MS_LOG(DEBUG) << *output << std::endl; MS_LOG(DEBUG) << *expected2[i] << std::endl; ASSERT_TRUE(*output == *expected2[i]); s = op->OutputShape(input_shape2_vector, output_shape); EXPECT_TRUE(s.IsOk()); ASSERT_TRUE(output_shape.size() == 1); ASSERT_TRUE(output->shape() == output_shape[0]); } MS_LOG(INFO) << "MindDataTestPadEndOp end."; }