# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context class TensorAdd(nn.Cell): def __init__(self): super(TensorAdd, self).__init__() self.add = P.TensorAdd() def construct(self, x, y): res = self.add(x, y) return res @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_tensor_add(): x = np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32) y = np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') add = TensorAdd() output = add(Tensor(x), Tensor(y)) assert (output.asnumpy() == x + y).all()