/** * Copyright 2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "ops/fusion/full_connection.h" #include "ir/dtype/type.h" #include "ir/value.h" #include "abstract/dshape.h" #include "utils/tensor_construct_utils.h" namespace mindspore { namespace ops { class TestFullConnection : public UT::Common { public: TestFullConnection() {} void SetUp() {} void TearDown() {} }; TEST_F(TestFullConnection, test_full_connection_1) { auto op = std::make_shared(); bool has_bias = false; bool use_axis = false; int64_t axis = 3; op->Init(has_bias, axis, use_axis, NO_ACTIVATION); auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16); EXPECT_EQ(shape_vec.size(), 2); EXPECT_EQ(shape_vec[0], 2); EXPECT_EQ(shape_vec[1], 2); } TEST_F(TestFullConnection, test_full_connection_2) { auto op = std::make_shared(); bool has_bias = true; bool use_axis = false; int64_t axis = 1; op->Init(has_bias, axis, use_axis, NO_ACTIVATION); auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto tensor_3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 2}); auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract(), tensor_3->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16); EXPECT_EQ(shape_vec.size(), 2); EXPECT_EQ(shape_vec[0], 2); EXPECT_EQ(shape_vec[1], 2); } TEST_F(TestFullConnection, test_full_connection_3) { auto op = std::make_shared(); bool has_bias = false; bool use_axis = true; int64_t axis = 1; op->Init(has_bias, axis, use_axis, NO_ACTIVATION); auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector{2, 3}); auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16); EXPECT_EQ(shape_vec.size(), 2); EXPECT_EQ(shape_vec[0], 2); EXPECT_EQ(shape_vec[1], 2); } } // namespace ops } // namespace mindspore