# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in train.py and eval.py """ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.transforms.vision.c_transforms as vision from config import cifar_cfg as cfg def create_dataset(data_home, repeat_num=1, training=True): """Data operations.""" ds.config.set_seed(1) data_dir = os.path.join(data_home, "cifar-10-batches-bin") if not training: data_dir = os.path.join(data_home, "cifar-10-verify-bin") rank_size = int(os.environ.get("RANK_SIZE")) if os.environ.get("RANK_SIZE") else None rank_id = int(os.environ.get("RANK_ID")) if os.environ.get("RANK_ID") else None data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) resize_height = cfg.image_height resize_width = cfg.image_width # define map operations random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) changeswap_op = vision.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, normalize_op, changeswap_op] # apply map operations on images data_set = data_set.map(input_columns="label", operations=type_cast_op) data_set = data_set.map(input_columns="image", operations=c_trans) # apply repeat operations data_set = data_set.repeat(repeat_num) # apply shuffle operations data_set = data_set.shuffle(buffer_size=10) # apply batch operations data_set = data_set.batch(batch_size=cfg.batch_size, drop_remainder=True) return data_set