# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """SSD dataset""" from __future__ import division import os import math import itertools as it import numpy as np import cv2 import mindspore.dataset as de import mindspore.dataset.transforms.vision.c_transforms as C from mindspore.mindrecord import FileWriter from config import ConfigSSD config = ConfigSSD() class GeneratDefaultBoxes(): """ Generate Default boxes for SSD, follows the order of (W, H, archor_sizes). `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [x, y, w, h]. `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [x1, y1, x2, y2]. """ def __init__(self): fk = config.IMG_SHAPE[0] / np.array(config.STEPS) self.default_boxes = [] for idex, feature_size in enumerate(config.FEATURE_SIZE): sk1 = config.SCALES[idex] / config.IMG_SHAPE[0] sk2 = config.SCALES[idex + 1] / config.IMG_SHAPE[0] sk3 = math.sqrt(sk1 * sk2) if config.NUM_DEFAULT[idex] == 3: all_sizes = [(0.5, 1.0), (1.0, 1.0), (1.0, 0.5)] else: all_sizes = [(sk1, sk1), (sk3, sk3)] for aspect_ratio in config.ASPECT_RATIOS[idex]: w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio) all_sizes.append((w, h)) all_sizes.append((h, w)) assert len(all_sizes) == config.NUM_DEFAULT[idex] for i, j in it.product(range(feature_size), repeat=2): for w, h in all_sizes: cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex] box = [np.clip(k, 0, 1) for k in (cx, cy, w, h)] self.default_boxes.append(box) def to_ltrb(cx, cy, w, h): return cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2 # For IoU calculation self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32') self.default_boxes = np.array(self.default_boxes, dtype='float32') default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb default_boxes = GeneratDefaultBoxes().default_boxes x1, y1, x2, y2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1) vol_anchors = (x2 - x1) * (y2 - y1) matching_threshold = config.MATCH_THRESHOLD def ssd_bboxes_encode(boxes): """ Labels anchors with ground truth inputs. Args: boxex: ground truth with shape [N, 5], for each row, it stores [x, y, w, h, cls]. Returns: gt_loc: location ground truth with shape [num_anchors, 4]. gt_label: class ground truth with shape [num_anchors, 1]. num_matched_boxes: number of positives in an image. """ def jaccard_with_anchors(bbox): """Compute jaccard score a box and the anchors.""" # Intersection bbox and volume. xmin = np.maximum(x1, bbox[0]) ymin = np.maximum(y1, bbox[1]) xmax = np.minimum(x2, bbox[2]) ymax = np.minimum(y2, bbox[3]) w = np.maximum(xmax - xmin, 0.) h = np.maximum(ymax - ymin, 0.) # Volumes. inter_vol = h * w union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol jaccard = inter_vol / union_vol return np.squeeze(jaccard) pre_scores = np.zeros((config.NUM_SSD_BOXES), dtype=np.float32) t_boxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) t_label = np.zeros((config.NUM_SSD_BOXES), dtype=np.int64) for bbox in boxes: label = int(bbox[4]) scores = jaccard_with_anchors(bbox) mask = (scores > matching_threshold) if not np.any(mask): mask[np.argmax(scores)] = True mask = mask & (scores > pre_scores) pre_scores = np.maximum(pre_scores, scores) t_label = mask * label + (1 - mask) * t_label for i in range(4): t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i] index = np.nonzero(t_label) # Transform to ltrb. bboxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2 bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]] # Encode features. bboxes_t = bboxes[index] default_boxes_t = default_boxes[index] bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.PRIOR_SCALING[0]) bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.PRIOR_SCALING[1] bboxes[index] = bboxes_t num_match_num = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32) return bboxes, t_label.astype(np.int32), num_match_num def ssd_bboxes_decode(boxes, index): """Decode predict boxes to [x, y, w, h]""" boxes_t = boxes[index] default_boxes_t = default_boxes[index] boxes_t[:, :2] = boxes_t[:, :2] * config.PRIOR_SCALING[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2] boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.PRIOR_SCALING[1]) * default_boxes_t[:, 2:4] bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32) bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2 bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2 return bboxes def preprocess_fn(image, box, is_training): """Preprocess function for dataset.""" def _rand(a=0., b=1.): """Generate random.""" return np.random.rand() * (b - a) + a def _infer_data(image, input_shape, box): img_h, img_w, _ = image.shape input_h, input_w = input_shape scale = min(float(input_w) / float(img_w), float(input_h) / float(img_h)) nw = int(img_w * scale) nh = int(img_h * scale) image = cv2.resize(image, (nw, nh)) new_image = np.zeros((input_h, input_w, 3), np.float32) dh = (input_h - nh) // 2 dw = (input_w - nw) // 2 new_image[dh: (nh + dh), dw: (nw + dw), :] = image image = new_image #When the channels of image is 1 if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) box = box.astype(np.float32) box[:, [0, 2]] = (box[:, [0, 2]] * scale + dw) / input_w box[:, [1, 3]] = (box[:, [1, 3]] * scale + dh) / input_h return image, np.array((img_h, img_w), np.float32), box def _data_aug(image, box, is_training, image_size=(300, 300)): """Data augmentation function.""" ih, iw, _ = image.shape w, h = image_size if not is_training: return _infer_data(image, image_size, box) # Random settings scale_w = _rand(0.75, 1.25) scale_h = _rand(0.75, 1.25) flip = _rand() < .5 nw = iw * scale_w nh = ih * scale_h scale = min(w / nw, h / nh) nw = int(scale * nw) nh = int(scale * nh) # Resize image image = cv2.resize(image, (nw, nh)) # place image new_image = np.zeros((h, w, 3), dtype=np.float32) dw = (w - nw) // 2 dh = (h - nh) // 2 new_image[dh:dh + nh, dw:dw + nw, :] = image image = new_image # Flip image or not if flip: image = cv2.flip(image, 1, dst=None) # Convert image to gray or not gray = _rand() < .25 if gray: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # When the channels of image is 1 if len(image.shape) == 2: image = np.expand_dims(image, axis=-1) image = np.concatenate([image, image, image], axis=-1) box = box.astype(np.float32) # Transform box with shape[x1, y1, x2, y2]. box[:, [0, 2]] = (box[:, [0, 2]] * scale * scale_w + dw) / w box[:, [1, 3]] = (box[:, [1, 3]] * scale * scale_h + dh) / h if flip: box[:, [0, 2]] = 1 - box[:, [2, 0]] box, label, num_match_num = ssd_bboxes_encode(box) return image, box, label, num_match_num return _data_aug(image, box, is_training, image_size=config.IMG_SHAPE) def create_coco_label(is_training): """Get image path and annotation from COCO.""" from pycocotools.coco import COCO coco_root = config.COCO_ROOT data_type = config.VAL_DATA_TYPE if is_training: data_type = config.TRAIN_DATA_TYPE #Classes need to train or test. train_cls = config.COCO_CLASSES train_cls_dict = {} for i, cls in enumerate(train_cls): train_cls_dict[cls] = i anno_json = os.path.join(coco_root, config.INSTANCES_SET.format(data_type)) coco = COCO(anno_json) classs_dict = {} cat_ids = coco.loadCats(coco.getCatIds()) for cat in cat_ids: classs_dict[cat["id"]] = cat["name"] image_ids = coco.getImgIds() image_files = [] image_anno_dict = {} for img_id in image_ids: image_info = coco.loadImgs(img_id) file_name = image_info[0]["file_name"] anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = coco.loadAnns(anno_ids) image_path = os.path.join(coco_root, data_type, file_name) annos = [] for label in anno: bbox = label["bbox"] class_name = classs_dict[label["category_id"]] if class_name in train_cls: x_min, x_max = bbox[0], bbox[0] + bbox[2] y_min, y_max = bbox[1], bbox[1] + bbox[3] annos.append(list(map(round, [x_min, y_min, x_max, y_max])) + [train_cls_dict[class_name]]) if len(annos) >= 1: image_files.append(image_path) image_anno_dict[image_path] = np.array(annos) return image_files, image_anno_dict def anno_parser(annos_str): """Parse annotation from string to list.""" annos = [] for anno_str in annos_str: anno = list(map(int, anno_str.strip().split(','))) annos.append(anno) return annos def filter_valid_data(image_dir, anno_path): """Filter valid image file, which both in image_dir and anno_path.""" image_files = [] image_anno_dict = {} if not os.path.isdir(image_dir): raise RuntimeError("Path given is not valid.") if not os.path.isfile(anno_path): raise RuntimeError("Annotation file is not valid.") with open(anno_path, "rb") as f: lines = f.readlines() for line in lines: line_str = line.decode("utf-8").strip() line_split = str(line_str).split(' ') file_name = line_split[0] image_path = os.path.join(image_dir, file_name) if os.path.isfile(image_path): image_anno_dict[image_path] = anno_parser(line_split[1:]) image_files.append(image_path) return image_files, image_anno_dict def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8): """Create MindRecord file.""" mindrecord_dir = config.MINDRECORD_DIR mindrecord_path = os.path.join(mindrecord_dir, prefix) writer = FileWriter(mindrecord_path, file_num) if dataset == "coco": image_files, image_anno_dict = create_coco_label(is_training) else: image_files, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH) ssd_json = { "image": {"type": "bytes"}, "annotation": {"type": "int32", "shape": [-1, 5]}, } writer.add_schema(ssd_json, "ssd_json") for image_name in image_files: with open(image_name, 'rb') as f: img = f.read() annos = np.array(image_anno_dict[image_name], dtype=np.int32) row = {"image": img, "annotation": annos} writer.write_raw_data([row]) writer.commit() def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0, is_training=True, num_parallel_workers=4): """Creatr SSD dataset with MindDataset.""" ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training) decode = C.Decode() ds = ds.map(input_columns=["image"], operations=decode) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) if is_training: hwc_to_chw = C.HWC2CHW() ds = ds.map(input_columns=["image", "annotation"], output_columns=["image", "box", "label", "num_match_num"], columns_order=["image", "box", "label", "num_match_num"], operations=compose_map_func, python_multiprocessing=True, num_parallel_workers=num_parallel_workers) ds = ds.map(input_columns=["image"], operations=hwc_to_chw, python_multiprocessing=True, num_parallel_workers=num_parallel_workers) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) else: hwc_to_chw = C.HWC2CHW() ds = ds.map(input_columns=["image", "annotation"], output_columns=["image", "image_shape", "annotation"], columns_order=["image", "image_shape", "annotation"], operations=compose_map_func) ds = ds.map(input_columns=["image"], operations=hwc_to_chw, num_parallel_workers=num_parallel_workers) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) return ds