# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """DSCNN eval.""" import os import datetime import glob import argparse import numpy as np from mindspore import context from mindspore import Tensor, Model from mindspore.common import dtype as mstype from src.config import eval_config from src.log import get_logger from src.dataset import audio_dataset from src.ds_cnn import DSCNN from src.models import load_ckpt def get_top5_acc(top5_arg, gt_class): sub_count = 0 for top5, gt in zip(top5_arg, gt_class): if gt in top5: sub_count += 1 return sub_count def val(args, model, test_de): '''Eval.''' eval_dataloader = test_de.create_tuple_iterator() img_tot = 0 top1_correct = 0 top5_correct = 0 for data, gt_classes in eval_dataloader: output = model.predict(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] gt_classes = gt_classes.asnumpy() t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += output.shape[0] results = [[top1_correct], [top5_correct], [img_tot]] results = np.array(results) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot if acc1 > args.best_acc: args.best_acc = acc1 args.best_index = args.index args.logger.info('Eval: top1_cor:{}, top5_cor:{}, tot:{}, acc@1={:.2f}%, acc@5={:.2f}%' \ .format(top1_correct, top5_correct, img_tot, acc1, acc5)) def main(): parser = argparse.ArgumentParser() parser.add_argument('--device_id', type=int, default=1, help='which device the model will be trained on') args, model_settings = eval_config(parser) context.set_context(mode=context.GRAPH_MODE, device_target="Davinci", device_id=args.device_id) # Logger args.outputs_dir = os.path.join(args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir) # show args args.logger.save_args(args) # find model path if os.path.isdir(args.model_dir): models = list(glob.glob(os.path.join(args.model_dir, '*.ckpt'))) print(models) f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[0].split('epoch')[-1]) args.models = sorted(models, key=f) else: args.models = [args.model_dir] args.best_acc = 0 args.index = 0 args.best_index = 0 for model_path in args.models: test_de = audio_dataset(args.feat_dir, 'testing', model_settings['spectrogram_length'], model_settings['dct_coefficient_count'], args.per_batch_size) network = DSCNN(model_settings, args.model_size_info) load_ckpt(network, model_path, False) network.set_train(False) model = Model(network) args.logger.info('load model {} success'.format(model_path)) val(args, model, test_de) args.index += 1 args.logger.info('Best model:{} acc:{:.2f}%'.format(args.models[args.best_index], args.best_acc)) if __name__ == "__main__": main()