# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into geir and onnx models################# """ import argparse import numpy as np import mindspore as ms from mindspore import Tensor, load_checkpoint, load_param_into_net, export from src.config import nasnet_a_mobile_config_gpu as cfg from src.nasnet_a_mobile import NASNetAMobile if __name__ == '__main__': parser = argparse.ArgumentParser(description='checkpoint export') parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of nasnet_a_mobile (Default: None)') args_opt = parser.parse_args() net = NASNetAMobile(num_classes=cfg.num_classes, is_training=False) param_dict = load_checkpoint(args_opt.checkpoint) load_param_into_net(net, param_dict) input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_size, cfg.image_size]), ms.float32) export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX") export(net, input_arr, file_name=cfg.geir_filename, file_format="GEIR")