# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import math import operator from functools import reduce import argparse import time import numpy as np import cv2 from mindspore import Tensor, context import mindspore.common.dtype as mstype from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import config from src.dataset import test_dataset_creator from src.ETSNET.etsnet import ETSNet from src.ETSNET.pse import pse parser = argparse.ArgumentParser(description='Hyperparams') parser.add_argument("--ckpt", type=str, default=0, help='trained model path.') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, save_graphs_path=".") class AverageMeter(): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def sort_to_clockwise(points): center = tuple(map(operator.truediv, reduce(lambda x, y: map(operator.add, x, y), points), [len(points)] * 2)) clockwise_points = sorted(points, key=lambda coord: (-135 - math.degrees( math.atan2(*tuple(map(operator.sub, coord, center))[::-1]))) % 360, reverse=True) return clockwise_points def write_result_as_txt(img_name, bboxes, path): if not os.path.isdir(path): os.makedirs(path) filename = os.path.join(path, 'res_{}.txt'.format(os.path.splitext(img_name)[0])) lines = [] for _, bbox in enumerate(bboxes): bbox = bbox.reshape(-1, 2) bbox = np.array(list(sort_to_clockwise(bbox)))[[3, 0, 1, 2]].copy().reshape(-1) values = [int(v) for v in bbox] line = "%d,%d,%d,%d,%d,%d,%d,%d\n" % tuple(values) lines.append(line) with open(filename, 'w') as f: for line in lines: f.write(line) def test(): if not os.path.isdir('./res/submit_ic15/'): os.makedirs('./res/submit_ic15/') if not os.path.isdir('./res/vis_ic15/'): os.makedirs('./res/vis_ic15/') ds = test_dataset_creator() config.INFERENCE = True net = ETSNet(config) print(args.ckpt) param_dict = load_checkpoint(args.ckpt) load_param_into_net(net, param_dict) print('parameters loaded!') get_data_time = AverageMeter() model_run_time = AverageMeter() post_process_time = AverageMeter() end_pts = time.time() iters = ds.create_tuple_iterator(output_numpy=True) count = 0 for data in iters: count += 1 # get data img, img_resized, img_name = data img = img[0].astype(np.uint8).copy() img_name = img_name[0].decode('utf-8') get_data_pts = time.time() get_data_time.update(get_data_pts - end_pts) # model run img_tensor = Tensor(img_resized, mstype.float32) score, kernels = net(img_tensor) score = np.squeeze(score.asnumpy()) kernels = np.squeeze(kernels.asnumpy()) model_run_pts = time.time() model_run_time.update(model_run_pts - get_data_pts) # post-process pred = pse(kernels, 5.0) scale = max(img.shape[:2]) * 1.0 / config.INFER_LONG_SIZE label = pred label_num = np.max(label) + 1 bboxes = [] for i in range(1, label_num): points = np.array(np.where(label == i)).transpose((1, 0))[:, ::-1] if points.shape[0] < 600: continue score_i = np.mean(score[label == i]) if score_i < 0.93: continue rect = cv2.minAreaRect(points) bbox = cv2.boxPoints(rect) * scale bbox = bbox.astype('int32') cv2.drawContours(img, [bbox], 0, (0, 255, 0), 3) bboxes.append(bbox) post_process_pts = time.time() post_process_time.update(post_process_pts - model_run_pts) if count == 1: get_data_time.reset() model_run_time.reset() post_process_time.reset() end_pts = time.time() # save res cv2.imwrite('./res/vis_ic15/{}'.format(img_name), img[:, :, [2, 1, 0]].copy()) write_result_as_txt(img_name, bboxes, './res/submit_ic15/') if __name__ == "__main__": test()