# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.ops import operations as P import mindspore.common.dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") var_np = np.random.rand(3, 3).astype(np.float32) accum_np = np.random.rand(3, 3).astype(np.float32) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.apply_adagrad = P.ApplyAdagrad() self.var = Parameter(Tensor(var_np), name="var") self.accum = Parameter(Tensor(accum_np), name="accum") def construct(self, lr, grad): self.apply_adagrad(self.var, self.accum, lr, grad) return self.var, self.accum @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_apply_adagrad(): # numpy op grident_np = np.random.rand(3, 3).astype(np.float32) expect_accum_np = accum_np + grident_np * grident_np expect_var_np = var_np - (0.001 * grident_np * (1 / np.sqrt(expect_accum_np + 1e-6))) net = Net() lr = Tensor(0.001, mstype.float32) grad = Tensor(grident_np) out = net(lr, grad) res_var_mindspore = out[0].asnumpy() res_accum_mindspore = out[1].asnumpy() eps = np.array([1e-6 for i in range(9)]).reshape(3, 3) assert np.all(expect_var_np - res_var_mindspore < eps) assert np.all(expect_accum_np - res_accum_mindspore < eps)