# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetBoundingBoxEncode(nn.Cell): def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): super(NetBoundingBoxEncode, self).__init__() self.encode = P.BoundingBoxEncode(means=means, stds=stds) def construct(self, anchor, groundtruth): return self.encode(anchor, groundtruth) def bbox2delta(proposals, gt, means, stds): px = (proposals[..., 0] + proposals[..., 2]) * 0.5 py = (proposals[..., 1] + proposals[..., 3]) * 0.5 pw = proposals[..., 2] - proposals[..., 0] + 1.0 ph = proposals[..., 3] - proposals[..., 1] + 1.0 gx = (gt[..., 0] + gt[..., 2]) * 0.5 gy = (gt[..., 1] + gt[..., 3]) * 0.5 gw = gt[..., 2] - gt[..., 0] + 1.0 gh = gt[..., 3] - gt[..., 1] + 1.0 dx = (gx - px) / pw dy = (gy - py) / ph dw = np.log(gw / pw) dh = np.log(gh / ph) means = np.array(means, np.float32) stds = np.array(stds, np.float32) deltas = np.stack([(dx - means[0]) / stds[0], (dy - means[1]) / stds[1], (dw - means[2]) / stds[2], (dh - means[3]) / stds[3]], axis=-1) return deltas @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_boundingbox_encode(): anchor = np.array([[4, 1, 6, 9], [2, 5, 5, 9]]).astype(np.float32) gt = np.array([[3, 2, 7, 7], [1, 5, 5, 8]]).astype(np.float32) means = (0.1, 0.1, 0.2, 0.2) stds = (2.0, 2.0, 3.0, 3.0) anchor_box = Tensor(anchor, mindspore.float32) groundtruth_box = Tensor(gt, mindspore.float32) expect_deltas = bbox2delta(anchor, gt, means, stds) error = np.ones(shape=[2, 4]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') boundingbox_encode = NetBoundingBoxEncode(means, stds) output = boundingbox_encode(anchor_box, groundtruth_box) diff = output.asnumpy() - expect_deltas assert np.all(abs(diff) < error) context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') boundingbox_encode = NetBoundingBoxEncode(means, stds) output = boundingbox_encode(anchor_box, groundtruth_box) diff = output.asnumpy() - expect_deltas assert np.all(abs(diff) < error)