# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G class NetEluGrad(nn.Cell): def __init__(self): super(NetEluGrad, self).__init__() self.eluGrad = G.EluGrad() def construct(self, x, dy): return self.eluGrad(dy, x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_elu_grad_fp16(): x = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float16)) dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float16)) expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float16) error = np.ones(shape=[2, 3]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") elu_grad = NetEluGrad() output = elu_grad(x, dy) diff = output.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_elu_grad_fp32(): x = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float32)) dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float32)) expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float32) error = np.ones(shape=[2, 3]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") elu_grad = NetEluGrad() output = elu_grad(x, dy) diff = output.asnumpy() - expect assert np.all(diff < error)