# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.status = P.FloatStatus() def construct(self, x): return self.status(x) class Netnan(nn.Cell): def __init__(self): super(Netnan, self).__init__() self.isnan = P.IsNan() def construct(self, x): return self.isnan(x) class Netinf(nn.Cell): def __init__(self): super(Netinf, self).__init__() self.isinf = P.IsInf() def construct(self, x): return self.isinf(x) class Netfinite(nn.Cell): def __init__(self): super(Netfinite, self).__init__() self.isfinite = P.IsFinite() def construct(self, x): return self.isfinite(x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x1 = np.array([[1.2, 2, np.nan, 88]]).astype(np.float32) x2 = np.array([[np.inf, 1, 88.0, 0]]).astype(np.float32) x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_status(): ms_status = Net() output1 = ms_status(Tensor(x1)) expect1 = 1 assert output1.asnumpy()[0] == expect1 output2 = ms_status(Tensor(x2)) expect2 = 1 assert output2.asnumpy()[0] == expect2 output3 = ms_status(Tensor(x3)) expect3 = 0 assert output3.asnumpy()[0] == expect3 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nan(): ms_isnan = Netnan() output1 = ms_isnan(Tensor(x1)) expect1 = [[False, False, True, False]] assert (output1.asnumpy() == expect1).all() output2 = ms_isnan(Tensor(x2)) expect2 = [[False, False, False, False]] assert (output2.asnumpy() == expect2).all() output3 = ms_isnan(Tensor(x3)) expect3 = [[False, False], [False, False], [False, False]] assert (output3.asnumpy() == expect3).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_inf(): ms_isinf = Netinf() output1 = ms_isinf(Tensor(x1)) expect1 = [[False, False, False, False]] assert (output1.asnumpy() == expect1).all() output2 = ms_isinf(Tensor(x2)) expect2 = [[True, False, False, False]] assert (output2.asnumpy() == expect2).all() output3 = ms_isinf(Tensor(x3)) expect3 = [[False, False], [False, False], [False, False]] assert (output3.asnumpy() == expect3).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_finite(): ms_isfinite = Netfinite() output1 = ms_isfinite(Tensor(x1)) expect1 = [[True, True, False, True]] assert (output1.asnumpy() == expect1).all() output2 = ms_isfinite(Tensor(x2)) expect2 = [[False, True, True, True]] assert (output2.asnumpy() == expect2).all() output3 = ms_isfinite(Tensor(x3)) expect3 = [[True, True], [True, True], [True, True]] assert (output3.asnumpy() == expect3).all()