# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class GeluNet(nn.Cell): def __init__(self): super(GeluNet, self).__init__() self.gelu = P.GeLU() def construct(self, x): return self.gelu(x) def GeluCompute(x): return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x))) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gelu_1d(): x_np = np.random.random((50,)).astype(np.float32) y_np = GeluCompute(x_np) x_ms = Tensor(x_np) net = GeluNet() y_ms = net(x_ms) assert np.allclose(y_np, y_ms.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gelu_2d(): x_np = np.random.random((50, 40)).astype(np.float32) y_np = GeluCompute(x_np) x_ms = Tensor(x_np) net = GeluNet() y_ms = net(x_ms) assert np.allclose(y_np, y_ms.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gelu_4d(): x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) y_np = GeluCompute(x_np) x_ms = Tensor(x_np) net = GeluNet() y_ms = net(x_ms) assert np.allclose(y_np, y_ms.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gelu_neg(): x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1 y_np = GeluCompute(x_np) x_ms = Tensor(x_np) net = GeluNet() y_ms = net(x_ms) assert np.allclose(y_np, y_ms.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gelu_4d_fp16(): x_np = np.random.random((32, 3, 224, 224)).astype(np.float16) y_np = GeluCompute(x_np) x_ms = Tensor(x_np) net = GeluNet() y_ms = net(x_ms) assert np.allclose(y_np, y_ms.asnumpy(), rtol=1e-3)