# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor class Net_Pool(nn.Cell): def __init__(self): super(Net_Pool, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="VALID") def construct(self, x): return self.maxpool_fun(x) class Net_Pool2(nn.Cell): def __init__(self): super(Net_Pool2, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME") def construct(self, x): return self.maxpool_fun(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_maxpool2d(): x = Tensor(np.array([[[ [0, 1, 2, 3, -4, -5], [6, 7, 8, 9, -10, -11], [12, 13, 14, -15, -16, -17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35] ]]]).astype(np.float32)) expect_result = (np.array([[[ [7, 9, -4], [19, 21, 23], [31, 33, 35] ]]])) expect_result2 = (np.array([[[ [14, 14, -4], [26, 28, 29], [32, 34, 35] ]]])) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") maxpool2d = Net_Pool() maxpool2d2 = Net_Pool2() output2 = maxpool2d2(x) output = maxpool2d(x) assert (output.asnumpy() == expect_result).all() assert (output2.asnumpy() == expect_result2).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") maxpool2d = Net_Pool() maxpool2d2 = Net_Pool2() output2 = maxpool2d2(x) output = maxpool2d(x) assert (output.asnumpy() == expect_result).all() assert (output2.asnumpy() == expect_result2).all()