# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class RangeNet(nn.Cell): def __init__(self, maxlen=50): super(RangeNet, self).__init__() self.range = P.Range(maxlen) def construct(self, start, limit, delta): return self.range(start, limit, delta) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_range_precision_end_equals_last_element(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") range_net = RangeNet(100) ms_out = range_net(Tensor(1000.04, mstype.float32), Tensor(1001.04, mstype.float32), Tensor(0.01, mstype.float32)).asnumpy() np_expected = np.arange(1000.04, 1001.04, 0.01, dtype=np.float32) np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5) range_net = RangeNet(1000) ms_out = range_net(Tensor(100, mstype.float32), Tensor(101, mstype.float32), Tensor(0.001, mstype.float32)).asnumpy() np_expected = np.arange(100, 101, 0.001, dtype=np.float32) np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5) range_net = RangeNet(799900) ms_out = range_net(Tensor(1, mstype.float32), Tensor(8000, mstype.float32), Tensor(0.01, mstype.float32)).asnumpy() np_expected = np.arange(1, 8000, 0.01, dtype=np.float32) np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5) range_net = RangeNet(53) ms_out = range_net(Tensor(-12000, mstype.float32), Tensor(-12053, mstype.float32), Tensor(-1, mstype.float32)).asnumpy() np_expected = np.arange(-12000, -12053, -1, dtype=np.float32) np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_range_int(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") range_net = RangeNet() ms_out = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy() np_expected = np.array([2, 3, 4]) np.testing.assert_array_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(-24, mstype.int32), Tensor(1, mstype.int32), Tensor(4, mstype.int32)).asnumpy() np_expected = np.array([-24, -20, -16, -12, -8, -4, 0]) np.testing.assert_array_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(8, mstype.int32), Tensor(1, mstype.int32), Tensor(-1, mstype.int32)).asnumpy() np_expected = np.array([8, 7, 6, 5, 4, 3, 2]) np.testing.assert_array_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(3, mstype.int32), Tensor(-11, mstype.int32), Tensor(-5, mstype.int32)).asnumpy() np_expected = np.array([3, -2, -7]) np.testing.assert_array_equal(ms_out, np_expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_range_float(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") range_net = RangeNet() ms_out = range_net(Tensor(2.3, mstype.float32), Tensor(5.5, mstype.float32), Tensor(1.2, mstype.float32)).asnumpy() np_expected = np.array([2.3, 3.5, 4.7]) np.testing.assert_array_almost_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(-4, mstype.float32), Tensor(-1, mstype.float32), Tensor(1.5, mstype.float32)).asnumpy() np_expected = np.array([-4.0, -2.5]) np.testing.assert_array_almost_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(8.0, mstype.float32), Tensor(1.0, mstype.float32), Tensor(-1.0, mstype.float32)).asnumpy() np_expected = np.array([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0]) np.testing.assert_array_almost_equal(ms_out, np_expected) range_net = RangeNet() ms_out = range_net(Tensor(1.5, mstype.float32), Tensor(-1, mstype.float32), Tensor(-18.9, mstype.float32)).asnumpy() np_expected = np.array([1.5]) np.testing.assert_array_almost_equal(ms_out, np_expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_range_invalid_max_output_length(): with pytest.raises(ValueError): _ = P.Range(0) _ = P.Range(-1) _ = P.Range(None) _ = P.Range('5') @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_range_invalid_input(): with pytest.raises(RuntimeError) as info: range_net = RangeNet() _ = range_net(Tensor(0, mstype.int32), Tensor(5, mstype.int32), Tensor(0, mstype.int32)).asnumpy() assert "delta cannot be equal to zero" in str(info.value) with pytest.raises(RuntimeError) as info: range_net = RangeNet(2) _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy() assert "number of elements in the output exceeds maxlen" in str(info.value) with pytest.raises(RuntimeError) as info: range_net = RangeNet() _ = range_net(Tensor(20, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy() assert "delta cannot be positive when limit < start" in str(info.value) with pytest.raises(RuntimeError) as info: range_net = RangeNet() _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(-4, mstype.int32)).asnumpy() assert "delta cannot be negative when limit > start" in str(info.value)