# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G class NetReciprocalGrad(nn.Cell): def __init__(self): super(NetReciprocalGrad, self).__init__() self.grad = G.ReciprocalGrad() def construct(self, y, dy): return self.grad(y, dy) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reciprocal_grad_float32(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") y = Tensor(np.array([[[[-1, 1, 12], [5, 34, 6], [10, 2, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[29, 1, 55], [2.2, 63, 2], [3, 3, 12]]]]).astype(np.float32)) expect = np.array([[[[-29, -1, -7920], [-55, -72828, -72], [-300, -12, -12]]]]).astype(np.float32) net = NetReciprocalGrad() output = net(y, dy) np.testing.assert_array_almost_equal(output.asnumpy(), expect) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") y = Tensor(np.array([[[[-1, 1, 12], [5, 34, 6], [10, 2, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[29, 1, 55], [2.2, 63, 2], [3, 3, 12]]]]).astype(np.float32)) expect = np.array([[[[-29, -1, -7920], [-55, -72828, -72], [-300, -12, -12]]]]).astype(np.float32) net = NetReciprocalGrad() output = net(y, dy) np.testing.assert_array_almost_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reciprocal_grad_float16(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") y = Tensor(np.array([[0.01, 0.2, 0.22], [10.002, 2, -1]]).astype(np.float16)) dy = Tensor(np.array([[34, 1, 55], [3, 3, 63]]).astype(np.float16)) expect = np.array([[-0.0034, -0.03998, -2.662], [-300, -12, -63]]).astype(np.float16) net = NetReciprocalGrad() output = net(y, dy) np.testing.assert_array_almost_equal(output.asnumpy(), expect) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") y = Tensor(np.array([[0.01, 0.2, 0.22], [10.002, 2, -1]]).astype(np.float16)) dy = Tensor(np.array([[34, 1, 55], [3, 3, 63]]).astype(np.float16)) expect = np.array([[-0.0034, -0.03998, -2.662], [-300, -12, -63]]).astype(np.float16) net = NetReciprocalGrad() output = net(y, dy) np.testing.assert_array_almost_equal(output.asnumpy(), expect)