# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval.""" import argparse import numpy as np import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.network import Network parser = argparse.ArgumentParser(description='MD Simulation') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend") if __name__ == '__main__': # get input data r = np.load(args_opt.dataset_path) d_coord, d_nlist, avg, std, atype, nlist = r['d_coord'], r['d_nlist'], r['avg'], r['std'], r['atype'], r['nlist'] batch_size = 1 atype_tensor = Tensor(atype) avg_tensor = Tensor(avg) std_tensor = Tensor(std) nlist_tensor = Tensor(nlist) d_coord_tensor = Tensor(np.reshape(d_coord, (1, -1, 3))) d_nlist_tensor = Tensor(d_nlist) frames = [] for i in range(batch_size): frames.append(i * 1536) frames = Tensor(frames) # evaluation net = Network() param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.to_float(mstype.float32) energy, atom_ener, _ = \ net(d_coord_tensor, d_nlist_tensor, frames, avg_tensor, std_tensor, atype_tensor, nlist_tensor) print('energy:', energy) print('atom_energy:', atom_ener)