# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops import operations as P context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() out_channel = 64 kernel_size = 7 self.conv = P.Conv2D(out_channel, kernel_size, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1) self.w = Parameter(initializer( 'normal', [64, 3, 7, 7]), name='w') @ms_function def construct(self, x): return self.conv(x, self.w) def test_net(): x = np.random.randn(32, 3, 224, 224).astype(np.float32) conv = Net() output = conv(Tensor(x)) print(output.asnumpy())