# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore.common.parameter import Parameter from mindspore import Tensor from mindspore.ops import operations as P class MomentumFusionNet(nn.Cell): def __init__(self, var, accum): super(MomentumFusionNet, self).__init__() self.op = P.ApplyMomentum() self.add = P.AddN() self.mul = P.Mul() self.var = Parameter(var, name="variable") self.accum = Parameter(accum, name="accumulate") self.lr = 0.1 self.weight_decay = 0.002 self.moment = 0.98 def construct(self, grad): wd = self.mul(self.var, self.weight_decay) g = self.add((wd, grad)) return self.op(self.var, self.accum, self.lr, g, self.moment) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_momentum_fusion(): np.random.seed(42) var = Tensor(np.random.randn(10, 20).astype(np.float32)) accum = Tensor(np.random.randn(10, 20).astype(np.float32)) grad = Tensor(np.random.randn(10, 20).astype(np.float32)) context.set_context(device_target='GPU', mode=context.GRAPH_MODE) net1 = MomentumFusionNet(var, accum) _ = net1(grad) context.set_context(device_target='GPU', mode=context.PYNATIVE_MODE) net2 = MomentumFusionNet(var, accum) _ = net2(grad) assert np.allclose(net1.var.data.asnumpy(), net2.var.data.asnumpy(), atol=1e-5) assert np.allclose(net1.accum.data.asnumpy(), net2.accum.data.asnumpy(), atol=1e-5)