# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetRelu(nn.Cell): def __init__(self): super(NetRelu, self).__init__() self.relu = P.ReLU() def construct(self, x): return self.relu(x) class NetReluDynamic(nn.Cell): def __init__(self): super(NetReluDynamic, self).__init__() self.conv = inner.GpuConvertToDynamicShape() self.relu = P.ReLU() def construct(self, x): x_conv = self.conv(x) return self.relu(x_conv) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_float32(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int8(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int8)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int8) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int32(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int32)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int64(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int64)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int64) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) print(output.asnumpy(), expect) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int64_dynamic_shape(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int64)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu_dynamic = NetReluDynamic() output = relu_dynamic(x) assert (output.asnumpy() == expect).all()