# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ tests for quant """ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore import nn from mindspore.train.quant import quant as qat from mobilenetv2_combined import MobileNetV2 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class LeNet5(nn.Cell): """ Lenet network Args: num_class (int): Num classes. Default: 10. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = nn.Conv2dBnAct(1, 6, kernel_size=5, batchnorm=True, activation='relu6', pad_mode="valid") self.conv2 = nn.Conv2dBnAct(6, 16, kernel_size=5, activation='relu', pad_mode="valid") self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu') self.fc2 = nn.DenseBnAct(120, 84, activation='relu') self.fc3 = nn.DenseBnAct(84, self.num_class) self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x @pytest.mark.skip(reason="no `te.lang.cce` in ut env") def test_qat_lenet(): img = Tensor(np.ones((32, 1, 32, 32)).astype(np.float32)) net = LeNet5() net = qat.convert_quant_network( net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8) # should load the checkpoint. mock here for param in net.get_parameters(): param.init_data() qat.export_geir(net, img, file_name="quant.pb") @pytest.mark.skip(reason="no `te.lang.cce` in ut env") def test_qat_mobile(): net = MobileNetV2() img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32)) net = qat.convert_quant_network( net, quant_delay=0, bn_fold=True, freeze_bn=10000, weight_bits=8, act_bits=8) # should load the checkpoint. mock here for param in net.get_parameters(): param.init_data() qat.export_geir(net, img, file_name="quant.pb")