# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_roc""" import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import ROC def test_roc(): """test_roc_binary""" x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]])) y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]])) metric = ROC(pos_label=1) metric.clear() metric.update(x, y) fpr, tpr, thresholds = metric.eval() assert np.equal(fpr, np.array([0, 0.4, 0.4, 0.6, 1])).all() assert np.equal(tpr, np.array([0, 0, 0.25, 0.75, 1])).all() assert np.equal(thresholds, np.array([4, 3, 2, 1, 0])).all() def test_roc2(): """test_roc_multiclass""" x = Tensor(np.array([[0.28, 0.55, 0.15, 0.05], [0.10, 0.20, 0.05, 0.05], [0.20, 0.05, 0.15, 0.05], [0.05, 0.05, 0.05, 0.75]])) y = Tensor(np.array([0, 1, 2, 3])) metric = ROC(class_num=4) metric.clear() metric.update(x, y) fpr, tpr, thresholds = metric.eval() list1 = [np.array([0., 0., 0.33333333, 0.66666667, 1.]), np.array([0., 0.33333333, 0.33333333, 1.]), np.array([0., 0.33333333, 1.]), np.array([0., 0., 1.])] list2 = [np.array([0., 1., 1., 1., 1.]), np.array([0., 0., 1., 1.]), np.array([0., 1., 1.]), np.array([0., 1., 1.])] list3 = [np.array([1.28, 0.28, 0.2, 0.1, 0.05]), np.array([1.55, 0.55, 0.2, 0.05]), np.array([1.15, 0.15, 0.05]), np.array([1.75, 0.75, 0.05])] assert fpr[0].shape == list1[0].shape assert np.equal(tpr[1], list2[1]).all() assert np.equal(thresholds[2], list3[2]).all() def test_roc_update1(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) metric = ROC() metric.clear() with pytest.raises(ValueError): metric.update(x) def test_roc_update2(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y = Tensor(np.array([1, 0])) metric = ROC() metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_roc_init1(): with pytest.raises(TypeError): ROC(pos_label=1.2) def test_roc_init2(): with pytest.raises(TypeError): ROC(class_num="class_num") def test_roc_runtime(): metric = ROC() metric.clear() with pytest.raises(RuntimeError): metric.eval()