# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing CutOut op in DE """ import matplotlib.pyplot as plt import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as c import mindspore.dataset.transforms.vision.py_transforms as f from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def visualize(image_1, image_2): """ visualizes the image using RandomErasing and Cutout """ plt.subplot(141) plt.imshow(image_1) plt.title("RandomErasing") plt.subplot(142) plt.imshow(image_2) plt.title("Cutout") plt.subplot(143) plt.imshow(image_1 - image_2) plt.title("Difference image") plt.show() def test_cut_out_op(): """ Test Cutout """ logger.info("test_cut_out") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) transforms_1 = [ f.Decode(), f.ToTensor(), f.RandomErasing(value='random') ] transform_1 = f.ComposeOp(transforms_1) data1 = data1.map(input_columns=["image"], operations=transform_1()) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) decode_op = c.Decode() cut_out_op = c.CutOut(80) transforms_2 = [ decode_op, cut_out_op ] data2 = data2.map(input_columns=["image"], operations=transforms_2) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) # C image doesn't require transpose image_2 = item2["image"] logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype)) # visualize(image_1, image_2) def test_cut_out_op_multicut(): """ Test Cutout """ logger.info("test_cut_out") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) transforms_1 = [ f.Decode(), f.ToTensor(), f.RandomErasing(value='random') ] transform_1 = f.ComposeOp(transforms_1) data1 = data1.map(input_columns=["image"], operations=transform_1()) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) decode_op = c.Decode() cut_out_op = c.CutOut(80, num_patches=10) transforms_2 = [ decode_op, cut_out_op ] data2 = data2.map(input_columns=["image"], operations=transforms_2) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) # C image doesn't require transpose image_2 = item2["image"] logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype)) if __name__ == "__main__": test_cut_out_op() test_cut_out_op_multicut()