# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P class Net(Cell): def __init__(self, axis=0, epsilon=1e-4): super(Net, self).__init__() self.norm = P.L2Normalize(axis=axis, epsilon=epsilon) def construct(self, x): return self.norm(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_l2normalize(): x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32) expect = x / np.sqrt(np.sum(x**2, axis=0, keepdims=True)) x = Tensor(x) error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") norm_op = Net(axis=0) output = norm_op(x) diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error)