# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import random import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as de from mindspore import Tensor, context from mindspore.train.serialization import export from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig bert_net_cfg = BertConfig( batch_size=2, seq_length=32, vocab_size=12, hidden_size=12, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16 ) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") random.seed(1) np.random.seed(1) de.config.set_seed(1) def export_bert_model(): input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) segment_ids = np.zeros((2, 32), dtype=np.int32) input_mask = np.zeros((2, 32), dtype=np.int32) net = BertModel(bert_net_cfg, False) export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.mindir', file_format='MINDIR') if __name__ == '__main__': export_bert_model()