# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """post process for 310 inference""" import argparse import numpy as np from PIL import Image from pycocotools.coco import COCO from src.config import config from src.util import coco_eval, bbox2result_1image, results2json, get_seg_masks dst_width = 1280 dst_height = 768 parser = argparse.ArgumentParser(description="maskrcnn inference") parser.add_argument("--ann_file", type=str, required=True, help="ann file.") parser.add_argument("--img_path", type=str, required=True, help="image file path.") args = parser.parse_args() def get_img_size(file_name): img = Image.open(file_name) return img.size def get_resize_ratio(img_size): org_width, org_height = img_size resize_ratio = dst_width / org_width if resize_ratio > dst_height / org_height: resize_ratio = dst_height / org_height return resize_ratio def get_eval_result(ann_file, img_path): """ Get metrics result according to the annotation file and result file""" max_num = 128 result_path = "./result_Files/" outputs = [] dataset_coco = COCO(ann_file) img_ids = dataset_coco.getImgIds() for img_id in img_ids: file_id = str(img_id).zfill(12) file = img_path + "/" + file_id + ".jpg" img_size = get_img_size(file) resize_ratio = get_resize_ratio(img_size) img_metas = np.array([img_size[1], img_size[0]] + [resize_ratio, resize_ratio]) bbox_result_file = result_path + file_id + "_0.bin" label_result_file = result_path + file_id + "_1.bin" mask_result_file = result_path + file_id + "_2.bin" mask_fb_result_file = result_path + file_id + "_3.bin" all_bbox = np.fromfile(bbox_result_file, dtype=np.float16).reshape(80000, 5) all_label = np.fromfile(label_result_file, dtype=np.int32).reshape(80000, 1) all_mask = np.fromfile(mask_result_file, dtype=np.bool_).reshape(80000, 1) all_mask_fb = np.fromfile(mask_fb_result_file, dtype=np.float16).reshape(80000, 28, 28) all_bbox_squee = np.squeeze(all_bbox) all_label_squee = np.squeeze(all_label) all_mask_squee = np.squeeze(all_mask) all_mask_fb_squee = np.squeeze(all_mask_fb) all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :] all_labels_tmp_mask = all_label_squee[all_mask_squee] all_mask_fb_tmp_mask = all_mask_fb_squee[all_mask_squee, :, :] if all_bboxes_tmp_mask.shape[0] > max_num: inds = np.argsort(-all_bboxes_tmp_mask[:, -1]) inds = inds[:max_num] all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds] all_labels_tmp_mask = all_labels_tmp_mask[inds] all_mask_fb_tmp_mask = all_mask_fb_tmp_mask[inds] bbox_results = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes) segm_results = get_seg_masks(all_mask_fb_tmp_mask, all_bboxes_tmp_mask, all_labels_tmp_mask, img_metas, True, config.num_classes) outputs.append((bbox_results, segm_results)) eval_types = ["bbox", "segm"] result_files = results2json(dataset_coco, outputs, "./results.pkl") coco_eval(result_files, eval_types, dataset_coco, single_result=False) if __name__ == '__main__': get_eval_result(args.ann_file, args.img_path)