# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomRotation op in DE """ import cv2 import matplotlib.pyplot as plt import mindspore.dataset.transforms.vision.c_transforms as c_vision import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.py_transforms as py_vision from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def visualize(a, mse, original): """ visualizes the image using DE op and enCV """ plt.subplot(141) plt.imshow(original) plt.title("Original image") plt.subplot(142) plt.imshow(a) plt.title("DE random_crop_and_resize image") plt.subplot(143) plt.imshow(a - original) plt.title("Difference image, mse : {}".format(mse)) plt.show() def diff_mse(in1, in2): mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean() return mse * 100 def test_random_rotation_op(): """ Test RandomRotation op """ logger.info("test_random_rotation_op") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) decode_op = c_vision.Decode() # use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size random_rotation_op = c_vision.RandomRotation((90, 90), expand=True) data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_rotation_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): if num_iter > 0: break rotation = item1["image"] original = item2["image"] logger.info("shape before rotate: {}".format(original.shape)) original = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE) diff = rotation - original mse = np.sum(np.power(diff, 2)) logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) assert mse == 0 # Uncomment below line if you want to visualize images # visualize(rotation, mse, original) num_iter += 1 def test_random_rotation_expand(): """ Test RandomRotation op """ logger.info("test_random_rotation_op") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() # use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size random_rotation_op = c_vision.RandomRotation((0, 90), expand=True) data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_rotation_op) num_iter = 0 for item in data1.create_dict_iterator(): rotation = item["image"] logger.info("shape after rotate: {}".format(rotation.shape)) num_iter += 1 def test_rotation_diff(): """ Test Rotation op """ logger.info("test_random_rotation_op") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() rotation_op = c_vision.RandomRotation((45, 45), expand=True) ctrans = [decode_op, rotation_op ] data1 = data1.map(input_columns=["image"], operations=ctrans) # Second dataset transforms = [ py_vision.Decode(), py_vision.RandomRotation((45, 45), expand=True), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(transforms) data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=transform()) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 c_image = item1["image"] py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) logger.info("shape of c_image: {}".format(c_image.shape)) logger.info("shape of py_image: {}".format(py_image.shape)) logger.info("dtype of c_image: {}".format(c_image.dtype)) logger.info("dtype of py_image: {}".format(py_image.dtype)) if __name__ == "__main__": test_random_rotation_op() test_random_rotation_expand() test_rotation_diff()