# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ This is the test module for mindrecord """ import collections import json import os import re import string import mindspore.dataset.transforms.vision.c_transforms as vision import numpy as np import pytest from mindspore.dataset.transforms.vision import Inter from mindspore import log as logger import mindspore.dataset as ds from mindspore.mindrecord import FileWriter FILES_NUM = 4 CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord" CV_DIR_NAME = "../data/mindrecord/testImageNetData" NLP_FILE_NAME = "../data/mindrecord/aclImdb.mindrecord" NLP_FILE_POS = "../data/mindrecord/testAclImdbData/pos" NLP_FILE_VOCAB= "../data/mindrecord/testAclImdbData/vocab.txt" @pytest.fixture def add_and_remove_cv_file(): """add/remove cv file""" paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0')) for x in range(FILES_NUM)] for x in paths: os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None writer = FileWriter(CV_FILE_NAME, FILES_NUM) data = get_data(CV_DIR_NAME) cv_schema_json = {"id": {"type": "int32"}, "file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} writer.add_schema(cv_schema_json, "img_schema") writer.add_index(["file_name", "label"]) writer.write_raw_data(data) writer.commit() yield "yield_cv_data" for x in paths: os.remove("{}".format(x)) os.remove("{}.db".format(x)) @pytest.fixture def add_and_remove_nlp_file(): """add/remove nlp file""" paths = ["{}{}".format(NLP_FILE_NAME, str(x).rjust(1, '0')) for x in range(FILES_NUM)] for x in paths: if os.path.exists("{}".format(x)): os.remove("{}".format(x)) if os.path.exists("{}.db".format(x)): os.remove("{}.db".format(x)) writer = FileWriter(NLP_FILE_NAME, FILES_NUM) data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)] nlp_schema_json = {"id": {"type": "string"}, "label": {"type": "int32"}, "rating": {"type": "float32"}, "input_ids": {"type": "int64", "shape": [-1]}, "input_mask": {"type": "int64", "shape": [1, -1]}, "segment_ids": {"type": "int64", "shape": [2,-1]} } writer.set_header_size(1 << 14) writer.set_page_size(1 << 15) writer.add_schema(nlp_schema_json, "nlp_schema") writer.add_index(["id", "rating"]) writer.write_raw_data(data) writer.commit() yield "yield_nlp_data" for x in paths: os.remove("{}".format(x)) os.remove("{}.db".format(x)) def test_cv_minddataset_writer_tutorial(): """tutorial for cv dataset writer.""" paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0')) for x in range(FILES_NUM)] for x in paths: os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None writer = FileWriter(CV_FILE_NAME, FILES_NUM) data = get_data(CV_DIR_NAME) cv_schema_json = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} writer.add_schema(cv_schema_json, "img_schema") writer.add_index(["file_name", "label"]) writer.write_raw_data(data) writer.commit() for x in paths: os.remove("{}".format(x)) os.remove("{}.db".format(x)) def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 def partitions(num_shards): for partition_id in range(num_shards): data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, num_shards=num_shards, shard_id=partition_id) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- partition : {} ------------------------".format(partition_id)) logger.info("-------------- item[label]: {} -----------------------".format(item["label"])) num_iter += 1 return num_iter assert partitions(4) == 3 assert partitions(5) == 2 assert partitions(9) == 2 def test_cv_minddataset_dataset_size(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) assert data_set.get_dataset_size() == 10 repeat_num = 2 data_set = data_set.repeat(repeat_num) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- get dataset size {} -----------------".format(num_iter)) logger.info("-------------- item[label]: {} ---------------------".format(item["label"])) logger.info("-------------- item[data]: {} ----------------------".format(item["data"])) num_iter += 1 assert num_iter == 20 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, num_shards=4, shard_id=3) assert data_set.get_dataset_size() == 3 def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["data", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) decode_op = vision.Decode() data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2) resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR) data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2) data_set = data_set.batch(2) data_set = data_set.repeat(2) num_iter = 0 labels = [] for item in data_set.create_dict_iterator(): logger.info("-------------- get dataset size {} -----------------".format(num_iter)) logger.info("-------------- item[label]: {} ---------------------".format(item["label"])) logger.info("-------------- item[data]: {} ----------------------".format(item["data"])) num_iter += 1 labels.append(item["label"]) assert num_iter == 10 logger.info("repeat shuffle: {}".format(labels)) assert len(labels) == 10 assert labels[0:5] == labels[0:5] assert labels[0:5] != labels[5:5] def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["data", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) decode_op = vision.Decode() data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2) resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR) data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2) data_set = data_set.batch(32, drop_remainder=True) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- get dataset size {} -----------------".format(num_iter)) logger.info("-------------- item[label]: {} ---------------------".format(item["label"])) logger.info("-------------- item[data]: {} ----------------------".format(item["data"])) num_iter += 1 assert num_iter == 0 def test_cv_minddataset_issue_888(add_and_remove_cv_file): """issue 888 test.""" columns_list = ["data", "label"] num_readers = 2 data = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False, num_shards=5, shard_id=1) data = data.shuffle(2) data = data.repeat(9) num_iter = 0 for item in data.create_dict_iterator(): num_iter += 1 assert num_iter == 18 def test_cv_minddataset_blockreader_tutorial(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["data", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, block_reader=True) assert data_set.get_dataset_size() == 10 repeat_num = 2 data_set = data_set.repeat(repeat_num) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter)) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) logger.info("-------------- item[data]: {} -----------------------------".format(item["data"])) num_iter += 1 assert num_iter == 20 def test_cv_minddataset_blockreader_some_field_not_in_index_tutorial(add_and_remove_cv_file): """tutorial for cv minddataset.""" columns_list = ["id", "data", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False, block_reader=True) assert data_set.get_dataset_size() == 10 repeat_num = 2 data_set = data_set.repeat(repeat_num) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter)) logger.info("-------------- item[id]: {} ----------------------------".format(item["id"])) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) logger.info("-------------- item[data]: {} -----------------------------".format(item["data"])) num_iter += 1 assert num_iter == 20 def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) assert data_set.get_dataset_size() == 10 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"]))) logger.info("-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 10 def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file): """tutorial for nlp minderdataset.""" num_readers = 4 data_set = ds.MindDataset(NLP_FILE_NAME + "0", None, num_readers) assert data_set.get_dataset_size() == 10 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- num_iter: {} ------------------------".format(num_iter)) logger.info("-------------- item[id]: {} ------------------------".format(item["id"])) logger.info("-------------- item[rating]: {} --------------------".format(item["rating"])) logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format( item["input_ids"], item["input_ids"].shape)) logger.info("-------------- item[input_mask]: {}, shape: {} -----------------".format( item["input_mask"], item["input_mask"].shape)) logger.info("-------------- item[segment_ids]: {}, shape: {} -----------------".format( item["segment_ids"], item["segment_ids"].shape)) assert item["input_ids"].shape == (50,) assert item["input_mask"].shape == (1, 50) assert item["segment_ids"].shape == (2, 25) num_iter += 1 assert num_iter == 10 def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) assert data_set.get_dataset_size() == 10 for epoch in range(5): num_iter = 0 for data in data_set: logger.info("data is {}".format(data)) num_iter += 1 assert num_iter == 10 data_set.reset() def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) resize_height = 32 resize_width = 32 # define map operations decode_op = vision.Decode() resize_op = vision.Resize((resize_height, resize_width), ds.transforms.vision.Inter.LINEAR) data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=4) data_set = data_set.map(input_columns=["data"], operations=resize_op, num_parallel_workers=4) data_set = data_set.batch(2) assert data_set.get_dataset_size() == 5 for epoch in range(5): num_iter = 0 for data in data_set: logger.info("data is {}".format(data)) num_iter += 1 assert num_iter == 5 data_set.reset() def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file): """tutorial for cv minderdataset.""" data_set = ds.MindDataset(CV_FILE_NAME + "0") assert data_set.get_dataset_size() == 10 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"]))) logger.info("-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 10 def test_cv_minddataset_reader_repeat_tutorial(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers) repeat_num = 2 data_set = data_set.repeat(repeat_num) num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- repeat two test {} ------------------------".format(num_iter)) logger.info("-------------- len(item[data]): {} -----------------------".format(len(item["data"]))) logger.info("-------------- item[data]: {} ----------------------------".format(item["data"])) logger.info("-------------- item[file_name]: {} -----------------------".format(item["file_name"])) logger.info("-------------- item[label]: {} ---------------------------".format(item["label"])) num_iter += 1 assert num_iter == 20 def get_data(dir_name): """ usage: get data from imagenet dataset params: dir_name: directory containing folder images and annotation information """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) img_dir = os.path.join(dir_name, "images") ann_file = os.path.join(dir_name, "annotation.txt") with open(ann_file, "r") as file_reader: lines = file_reader.readlines() data_list = [] for i, line in enumerate(lines): try: filename, label = line.split(",") label = label.strip("\n") with open(os.path.join(img_dir, filename), "rb") as file_reader: img = file_reader.read() data_json = {"id": i, "file_name": filename, "data": img, "label": int(label)} data_list.append(data_json) except FileNotFoundError: continue return data_list def get_multi_bytes_data(file_name, bytes_num=3): """ Return raw data of multi-bytes dataset. Args: file_name (str): String of multi-bytes dataset's path. bytes_num (int): Number of bytes fields. Returns: List """ if not os.path.exists(file_name): raise IOError("map file {} not exists".format(file_name)) dir_name = os.path.dirname(file_name) with open(file_name, "r") as file_reader: lines = file_reader.readlines() data_list = [] row_num = 0 for line in lines: try: img10_path = line.strip('\n').split(" ") img5 = [] for path in img10_path[:bytes_num]: with open(os.path.join(dir_name, path), "rb") as file_reader: img5 += [file_reader.read()] data_json = {"image_{}".format(i): img5[i] for i in range(len(img5))} data_json.update({"id": row_num}) row_num += 1 data_list.append(data_json) except FileNotFoundError: continue return data_list def get_mkv_data(dir_name): """ Return raw data of Vehicle_and_Person dataset. Args: dir_name (str): String of Vehicle_and_Person dataset's path. Returns: List """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) img_dir = os.path.join(dir_name, "Image") label_dir = os.path.join(dir_name, "prelabel") data_list = [] file_list = os.listdir(label_dir) index = 1 for item in file_list: if os.path.splitext(item)[1] == '.json': file_path = os.path.join(label_dir, item) image_name = ''.join([os.path.splitext(item)[0], ".jpg"]) image_path = os.path.join(img_dir, image_name) with open(file_path, "r") as load_f: load_dict = json.load(load_f) if os.path.exists(image_path): with open(image_path, "rb") as file_reader: img = file_reader.read() data_json = {"file_name": image_name, "prelabel": str(load_dict), "data": img, "id": index} data_list.append(data_json) index += 1 logger.info('{} images are missing'.format(len(file_list)-len(data_list))) return data_list def get_nlp_data(dir_name, vocab_file, num): """ Return raw data of aclImdb dataset. Args: dir_name (str): String of aclImdb dataset's path. vocab_file (str): String of dictionary's path. num (int): Number of sample. Returns: List """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) for root, dirs, files in os.walk(dir_name): for index, file_name_extension in enumerate(files): if index < num: file_path = os.path.join(root, file_name_extension) file_name, _ = file_name_extension.split('.', 1) id_, rating = file_name.split('_', 1) with open(file_path, 'r') as f: raw_content = f.read() dictionary = load_vocab(vocab_file) vectors = [dictionary.get('[CLS]')] vectors += [dictionary.get(i) if i in dictionary else dictionary.get('[UNK]') for i in re.findall(r"[\w']+|[{}]" .format(string.punctuation), raw_content)] vectors += [dictionary.get('[SEP]')] input_, mask, segment = inputs(vectors) input_ids = np.reshape(np.array(input_), [-1]) input_mask = np.reshape(np.array(mask), [1, -1]) segment_ids = np.reshape(np.array(segment), [2, -1]) data = { "label": 1, "id": id_, "rating": float(rating), "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids } yield data def convert_to_uni(text): if isinstance(text, str): return text if isinstance(text, bytes): return text.decode('utf-8', 'ignore') raise Exception("The type %s does not convert!" % type(text)) def load_vocab(vocab_file): """load vocabulary to translate statement.""" vocab = collections.OrderedDict() vocab.setdefault('blank', 2) index = 0 with open(vocab_file) as reader: while True: tmp = reader.readline() if not tmp: break token = convert_to_uni(tmp) token = token.strip() vocab[token] = index index += 1 return vocab def inputs(vectors, maxlen=50): length = len(vectors) if length > maxlen: return vectors[0:maxlen], [1]*maxlen, [0]*maxlen input_ = vectors+[0]*(maxlen-length) mask = [1]*length + [0]*(maxlen-length) segment = [0]*maxlen return input_, mask, segment