# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, bias): return C.grad_all(self.network)(x, y, bias) def test_sum_as_loss(): class Net(nn.Cell): def __init__(self, strategy0, strategy1): super().__init__() self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0) self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1) def construct(self, x, y, bias): out = self.fc_nobias(x, y) out = self.reduce_sum(out, (0, 1)) return out context.set_auto_parallel_context(device_num=16, global_rank=0) strategy0 = ((4, 1), (4, 1)) strategy1 = ((4, 1), ) net = GradWrap(Net(strategy0, strategy1)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 32]), dtype=ms.float32) bias = Tensor(np.ones([64]), dtype=ms.float32) _executor.compile(net, x, y, bias) def test_sum_as_loss2(): class Net(nn.Cell): def __init__(self, strategy0, strategy1): super().__init__() self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0) self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1) def construct(self, x, y, bias): out = self.fc_nobias(x, y) out = self.reduce_sum(out, (0, 1)) return out context.set_auto_parallel_context(device_num=16, global_rank=0) strategy0 = ((4, 1), (4, 1)) strategy1 = ((1, 1), ) net = GradWrap(Net(strategy0, strategy1)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 32]), dtype=ms.float32) bias = Tensor(np.ones([64]), dtype=ms.float32) _executor.compile(net, x, y, bias)