/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "pipeline/jit/parse/python_adapter.h" #include "pipeline/jit/parse/data_converter.h" #include "frontend/operator/ops.h" #include "pipeline/pynative/pynative_execute.h" #include "utils/ms_context.h" #include "utils/utils.h" namespace py = pybind11; using pybind11::literals::operator"" _a; using Tensor = mindspore::tensor::Tensor; using TensorPtr = mindspore::tensor::TensorPtr; namespace mindspore { namespace pynative { class TestPynativeExecute : public UT::Common { public: TestPynativeExecute() {} }; inline ValuePtr PyAttrValue(const py::object &obj) { ValuePtr converted_ret; bool converted = parse::ConvertData(obj, &converted_ret); if (!converted) { MS_LOG(EXCEPTION) << "attribute convert error with type:" << std::string(py::str(obj)); } return converted_ret; } OpExecInfoPtr ConstructOpExecInfo() { py::str op_name = "Conv2D"; py::object tensor_py_module = py::module::import("mindspore.common.tensor").attr("Tensor"); py::object np_py_module = py::module::import("numpy"); py::object np_ones = np_py_module.attr("ones"); py::object np_float32 = np_py_module.attr("float32"); py::tuple weight_dim = py::make_tuple(64, 3, 3, 3); py::object weight = tensor_py_module(np_float32(np_ones(weight_dim))); py::tuple op_params = py::make_tuple(weight); py::tuple inputs_dim = py::make_tuple(1, 3, 6, 6); py::object input = tensor_py_module(np_float32(np_ones(inputs_dim))); py::tuple op_inputs = py::make_tuple(input, weight); py::tuple kernel_size = py::make_tuple(3, 3); py::dict op_attrs = py::dict("out_channel"_a = 64, "kernel_size"_a = kernel_size, "mode"_a = 1, "pad_mode"_a = "same", "stride"_a = 1, "dilation"_a = 1, "group"_a = 1, "data_format"_a = kOpFormat_NCHW); auto conv_obj = prim::GetPythonOps("conv2d_prim", "gtest_input.pynative"); py::none py_none; py::args args = py::make_tuple(conv_obj, op_name, op_inputs); py::list args_input = args[PY_INPUTS]; return GenerateOpExecInfo(args); } TEST_F(TestPynativeExecute, TestCreateContext) { auto ctx3 = MsContext::GetInstance(); ASSERT_EQ(ctx3->backend_policy(), "vm"); ASSERT_EQ(ctx3->get_param(MS_CTX_DEVICE_TARGET), "CPU"); ctx3->set_backend_policy("ge_only"); ctx3->set_param(MS_CTX_DEVICE_TARGET, "GPU"); auto ctx4 = MsContext::GetInstance(); ASSERT_EQ(ctx3.get(), ctx4.get()); ASSERT_EQ(ctx4->backend_policy(), "ge_only"); ASSERT_EQ(ctx4->get_param(MS_CTX_DEVICE_TARGET), "GPU"); } TEST_F(TestPynativeExecute, TestDefaultContext) { auto ctx = MsContext::GetInstance(); ASSERT_EQ(std::string(ctx->backend_policy()), "ge_only"); auto ctx2 = MsContext::GetInstance(); ASSERT_EQ(ctx.get(), ctx2.get()); } } // namespace pynative } // namespace mindspore